fa
\Y
University of Twente

The Netherlands

Implementing and communicating with SHILS

Master’s Thesis
by

Remco Blumink

Committee:
ir. P.T. Wolkotte
dr. ir. A.BJ. Kokkeler
ir. P.K.F. Holzenspies

University of Twente, Enschede, The Netherlands
August 25, 2008

Abstract

Simulation can be used to check whether a design complies to its specifications.
Digital hardware designs must be simulated cycle-true, bit accurate to verify timing.
Performing such simulations takes prohibitively long for large hardware designs, i.e.
a 6x6 NoC design requires 29 hours for simulation.

Simulation on an FPGA platform can be used to shorten the simulation time.
However, a large hardware design can not be simulated in a single FPGA as a whole.
To be able to simulate a large system using a single FPGA, the system is divided in
sections (entities) that are simulated sequentially. The entities in homogeneous sys-
tems are identical, the required logic for an entity can be reused for all entities when
the state of the entities can be extracted. For extraction, a tool is provided. The re-
sulting simulator performs simulations on a Design Under Test (DUT) sequentially.

To simulate a system in an FPGA, it must be supplied with stimuli and control.
This thesis integrates the simulator in an FPGA design, referred to as SHILS. SHILS
provides stimuli and control buffers, and a MMIO interface. SHILS is controlled by
software in an embedded processor, it is a co-simulation system.

In order to extend the capabilities of SHILS, a design is proposed to link MAT-
LAB to SHILS. The design is based on Xilinx System Generator, which arranges the
communication between the MATLAB model and SHILS over Ethernet.

Contents

List of Acronyms

1

Introduction

11

1.2 Assignment
1.3 ThesisOutline
Background
2.1 System design process

2.1.1 Digital System Design

2.1.2 Toolchain
2.2 Co-simulation
2.3 Sequential Simulator

2.3.1 Simulator design

232 UsingSHILS
24 Relatedwork

2.4.1 Hardware emulation systems
2.4.2 Sequential Simulation

2.43 Co-simulation

Basic SHILS design

3.1 Systemstructure
32 Design.................
321 Stimuli
3.2.2 Stimuli Buffer design
3.2.3 Output buffer design
3.2.4 Interface bridge design
Implementation
41 Platform
4.2 Hardware implementation

4.2.1 System Controller
42,2 Memory-Mapped I/0 interface
4.2.3 Simulator

4,2.4 Stimuli buffer

1.1.1 Hardware-based simulation: emulation
1.1.2 Sequential Simulation

Contents

iii

N U W N ==

O O 0 0 3

iii

iv

7

CONTENTS
425 Timecodechecker. 30
42.6 Outputbuffer 31
4.3 Software implementation 31
43.1 Configureconnection 32
43.2 Testconnection 33
43.3 Configuresimulation 33
43.4 Runsimulation 33
Tool evaluation 35
51 Requirements 36
52 Criteria e 36
53 Selectedtools. e 38
54 MATLAB e e 38
541 MATLABEDALnkMQ 39
5.5 Xilinx System Generator. 40
5.6 AlteraDSPBuilder 40
57 CosiMate e 40
58 Ptolemy 42
59 SIMIiCS. e 42
5.10 Manualsolution, 43
511 COmMPariSON . . . v v v v v v v e e et e e e e e e e e e e e 43
5.12 Conclusion 46
Co-simulation system design 47
6.1 Requirements 48
6.2 Global systemstructure, 48
6.3 Datatransfermethod 49
6.3.1 Reuse MMIO interface inFPGA 49

6.3.2 Add address generation to Field Programmable Gate Array
(FPGA) . o oo 49
6.3.3 Interconnectionmedium 50
6.4 Xilinx-baseddesign 52
6.41 Performance 53
6.4.2 Deploymenteffort. 53
6.43 Resources 53
6.5 Conclusion 53
Results 55
7.1 Simulator Scalability 56
7.2 Scalability of stimulibuffer 56
7.2.1 Storagescaling 57
7.22 Controlscaling 57
7.3 Control bufferscalability 57
Conclusion 59
8.1 Recommendations and Futurework 60
8.1.1 Improve conversion to simulator 60
8.1.2 Better simulation control in FPGA 60
8.1.3 Data compression of stimuli and outputdata 60

8.1.4 Replace QuestaSimwith SHILS 60

CONTENTS

A Memory Map

B Test case: IIR filter
Bl IRfilter.
B.2 Homogeneous structure
B3 Challenges
B4 Results

C C code listings

Bibliography

61

65
65
67
68
70

71

73

List of Acronyms

AHB Advanced High-Speed Bus

ASIC Application Specific Integrated Circuit
BCVP Basic Concept Verification Platform
CAES Computer Architecture for Embedded Systems
DSP Digital Signal Processing

DMA Direct Memory Access

DUT Design Under Test

EBI External Bus Interface

EDA Electronic Design Automation

EDIF Electronic Data Interchange Format
FIFO First In-First Out

FSB Front Side Bus

FPGA Field Programmable Gate Array
GPP General Purpose Processor

GUI Graphical User Interface

HDL Hardware Description Language

HIL Hardware-in-the-loop

IC Integrated Circuit

IIR Infinite Impulse Response

ISE Integrated Synthesis Environment
LUT Look Up Table

MMIO Memory Mapped In-/Output

NoC Network on Chip

OSI Open Systems Interconnection reference model

vii

viii LIST OF ACRONYMS

SoC System on Chip

SHILS Sequential Hardware-In-the-Loop Simulator
RAMP Research Accelerator for Multiple Processors
RTL Register Transfer Level

VHDL Very High Speed Integrated Circuit Hardware Description Language

CHAPTER

Introduction

1.1 Motivation

When a system is designed, it is important to know whether the design is correct.
Knowledge on this matter is evenly important for digital systems and digital
hardware designs. Technology for digital systems has evolved greatly because of
advances in Integrated Circuit (IC) technology. More flexible chips have become
available, like Field Programmable Gate Arrays (FPGAs) and nowadays a complete
system is constructed on a single chip (a System on Chip (SoC)) instead of several
chips mounted on a Printed Circuit Board(PCB). Also, there is a tendency to design
multicore processors, possibly connected to each other via a Network on Chip (NoC).

Development of a SoC is a very complex task, but can be structured by the sep-
aration of communication and computation. This can be implemented by means of
a NoC [2]. still, errors and mistakes are introduced in system design. SoCs can be
realized in an Application Specific Integrated Circuit (ASIC). Production of an ASIC
is extremely costly. Therefore, design errors need to be eliminated. Besides design
verification, the facility to optimise the network’s parameters is desirable to achieve
the best possible results.

Before continuing, several terms should be defined to avoid confusion.

Definition 1 (Verification): Based on a complete specification (using pre- and post-
conditions), give a solid proof that the postcondition holds given the truth of the precondition.
Thus, if the precondition does not hold, the postcondition needs to fail too. This also holds for
the system’s specification and its implementation.

In verification, an important assumption is that a system is accurately specified
by means of pre- and postconditions. That is to say, if the precondition is true before
an execution of the system starts, then the postcondition must be true after execu-
tion. If a system is specified using pre- and postconditions, than its correctness can
be formally verified (proved): just assume that the precondition holds for all input
of the system, and prove that the output satisfies the postcondition. However, in
practice this technique is only possible for fairly small components of a system, the
system as a whole is often too complex to be proven correctly in a formal way. In
real life, the best way to check whether a system is correct, is by simulation:

2 CHAPTER 1. INTRODUCTION

Definition 2 (Simulation): To represent the behaviour of a design by using another
system, for example by a computer program designed for this purpose. Characteristic is that
simulation should imitate the internal processes and not necessarily deliver the results of the
design that is simulated for the purpose of detailed analysis and prediction. Also, the execution
time of the simulated entity does not necessarily match the real time.

The term verification by simulation is used when applying simulation to check
the correctness of a system. This is not formal verification as only can be proven
that in certain conditions a system will fail or pass. Nevertheless, verification by
simulation is often used in system design to replace formal verification.

Using simulation, the behaviour of a design can thus be examined. Simulation of
a synchronous digital system is possible at multiple abstraction levels, but is mainly
performed at two levels: abstract (behavioural) and cycle-accurate (precise). Be-
havioural simulation focuses on the way a design behaves, the exact number of clock
cycles an operation requires are not taken into account. An advantage of this method
is that behavioural simulation is reasonably fast to compute on a normal PC. Simu-
lation is completed in an acceptable amount of time.

Another, often used, method is cycle-accurate or cycle-true simulation. The
main difference with behavioural simulation is that timing is included in simula-
tion. Each operation takes exactly as many clock cycles as a real ASIC. Calculating
all states in each time step creates a greater computational complexity, which even-
tually leads to prohibitively long simulation times when designs are large. For exam-
ple, a 6x6 NoC described in the SystemC language requires 29 hours to complete [39].

When simulating a complete system, only system-wide details are required by
the user. Internal details are required for precise timing and are thus calculated
every simulation step although system-wide data is examined.

1.1.1 Hardware-based simulation: emulation

Due to the problems which arose with the time needed to complete a cycle-accurate
simulation, and the availability of parallel hardware, several initiatives started to in-
vestigate the possibilities of using FPGAs for simulation. By creating the hardware in
the FPGA, the simulated design can be operated fully in parallel instead of sequen-
tially in software on an ordinary PC. This will reduce the total simulation time by
several factors.

Performing simulation in physical hardware is sometimes also referred as emu-
lation. For the sake of completeness, emulation is defined in definition 3.

Definition 3 (Emulation): A system which is behaving exactly as a real system, but is
mapped to a different system. The main difference with simulation is that to the system’s
environment, the system acts fully identically compared to the system it replaces. It is possi-
ble to replace a real design with an emulator in a system without notice of the other system
parts. For developers/debugging, an emulator often provides for several facilities to monitor
variables inside the emulator.

Several research initiatives started exploring the use of emulation for verifica-
tion of designs, which are discussed in more detail in section 2.4.

At the University of Twente, several platforms for streaming data applications
are developed and researched.

1.1. MOTIVATION 3

Intermezzo: Streaming data

Streaming data is a model which is used when large quantities of data
arrive continuously. Characteristic is that storage of this data is not needed
for a long period, as it is either impractical, or just unnecessary. There are
several applications which naturally generate vast amounts of data which
arrive continuously, instead of simple sets of data arriving accidental, for
example multimedia applications (IPTV etc.), financial markets and news
organizations [28].

Focus of the University is mainly at multimedia applications.

These streaming applications are mapped on homo- and heterogeneous tiled
architectures which often incorporate parallelism and have a more or less regular
structure, composed out of a lot of identical components. An example of this is a SoC
build of 9 elements interconnected via a NoC as shown in figure 1.1. The processing
elements (PE) in this figure are displayed smaller than the router for ease of drawing.
This is not necessarily the case in reality.

i, N

@— Router Router Router
@— Router Router Router
@— Router Router Router

Figure 1.1: System on Chip Example

Systems that are just slightly larger than this example (like a NoC of 6x6 ele-
ments), are virtually impossible to simulate in software [38]. Therefore, research
effort has been put into the development of a dedicated simulation system.

1.1.2 Sequential Simulation

Systems like the example of figure 1.1 require too many resources to be realized in
a single FPGA to be used as emulator. For example, the RAMP project [3] uses a lot
of very expensive FPGAs to map a multiprocessor on. To reduce size and cost allo-
cations, several initiatives create a system which operates in a single FPGA by using

4 CHAPTER 1. INTRODUCTION

time-multiplexing [12, 39]. System-level simulations are then performed sequen-
tially in parallel hardware instead of parallel on a sequential system.

A digital system is represented by its state and logic. When logic and state be-
come too large, it is not possible to update the entire state at a single moment due
to resource constraints in an FPGA.

It is possible to partially update the state of a system. This is achieved by divid-
ing the state is into several sections, which are then sequentially updated. These
sections are referred to as entities. The number of logic needed to update an indi-
vidual section of the system state is significantly less than the required logic for the
entire system. Common functionality of entities can be shared by all state updates of
individual sections. The logic can be reused, therefore fewer resources are required.
This enables the use of a single FPGA for simulation of the entire system (when the
entity requires no more resources than available in a single FPGA). The example sys-
tem shown in figure 1.1 can be simulated in sections based upon the reuse of logic
from single router and processing element. The modification of the figure is shown
in figure 1.2.

Figure 1.2: Sequential System on Chip Example

The state of digital synchronous systems can alter both on the rising edge and the
falling edge of the system clock. Therefore, the entire system should be evaluated
for both parts of a clock period. An entity can be simulated during each simulation
cycle. A single instance simulation cycle is addressed as delta cycle for readability.
An example system consisting of four identical parts requires eight simulator clock
cycles to complete simulation of one system clock cycle, which is shown in the ex-
ample schedule in figure 1.3.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

System clock ! l |

Simulation clock

«———— One full system simulation cycle ——

Simulated entity © = P # # " P P #4
>

Single instance evaluation

Figure 1.3: Global simulator time line

To simulate an entity with the sequential simulator, the state of the other en-
tities should be stored elsewhere. After all, the logic is reused in simulation. The

1.2. ASSIGNMENT 5

registers and other memory elements are replaced by custom components that link
to an external storage location for their values. Thus instead of an entity with some
memory elements shown in figure 1.4a, the memory elements are replaced with a
component that fetches and updates the corresponding element of external state as
shown in figure 1.4b. By storing the entire state of a system in an external memory,
more efficient storage is provided compared to flip-flops as the density of RAM in
FPGAs is much higher compared to that of registers.

In this way, at any moment in time, only a small section (a single entity) of the
entire system is used in the simulator. Therefore, the number of required resources
are much lower than for the complete system. In homogeneous systems the logic
for most entities is identical, which lowers the required resources further.

state
m
J 0

W

—~ o o
= Mem c 2 ? =
= g = =S

o E 3 g

= - Q. =+

- @ < @

~ — ~

(a) Original design (b) Design with extracted memory elements

Figure 1.4: State extraction example

Of course, emulating a system sequentially requires more time than a fully par-
allel system, but this is several orders of magnitude faster compared to simulation
in software. To control the simulator, hardware is added to the FPGA.

Efforts from Rutgers [33] at the University of Twente delivered a tool which:

1. Automatically extracts memory elements out of a design.

2. Provides a wrapper around the transformed entity, which provides memory
for the extracted state of the simulated entity and the links between entities.

Rutgers has also provided in the simulator, to which is referred as “the simulator”
in this thesis.

The simulator requires external control and the simulator should be provided
with stimuli. The simulator is designed to operate in a system consisting of an FPGA
that houses the simulator and a processor to provide it with stimuli, according to the
Hardware-in-the-loop (HIL) principle. However, the external interface of the sim-
ulator is not directly linked to any physical interface like a Direct Memory Access
(DMA) interface. The simulator is also not equipped with buffering capabilities for
both stimuli and the output data of simulated entities. Therefore, the simulator de-
livered by Rutgers is not yet able to perform simulations.

1.2 Assignment

This thesis project started to provide the simulator with external control and stim-
uli. It is centred around communication between the simulator and processor. This

6 CHAPTER 1. INTRODUCTION

section discusses the problems dealt with in this thesis.
The main focus of this thesis is:

What measures are needed to connect a stimuli generator and an anal-
ysis program operating on a PC to the sequential simulator operating in
an FPGA?

This question is based upon two pillars, which explain why this problem is discussed
in this thesis.

First, the simulator delivered by Rutgers was not ready for usage in the FPGA. A
major concern is that the simulator and processor operate at different clock frequen-
cies. Also, the frequency of producing and consuming differs. Therefore, buffering
is required. The first part of this thesis is thus focused at:

How to implement the simulator in an actual FPGA, how to connect it to
a processor and how to make them communicate?

Second, as noted in [38,39], there is a significant effort required of a small pro-
cessor for stimuli generation. Since a PC is equipped with a much greater amount of
processing power, it is very interesting to replace this processor with a PC to save
more processing power for analysis and control tasks. Also, software is available for
data generation and analysis. The second question is formulated as follows:

How to connect a PC with the sequential simulator on the FPGA, how to
make them communicate and process data?

The PC-based simulation system must have better performance than the system us-
ing an embedded processor. Also, tool chain integration is important for more easy
generation of stimuli and analysis.

For readability, SHILS is used to refer to the complete sequential simulation sys-
tem hardware. Statements on the simulator exclusively apply to the simulator de-
livered by Rutgers.

1.3 Thesis Outline

This thesis begins with background information on sequential simulation and re-
lated work. To introduce sequential simulation, chapter 2 starts with a discussion of
abasic FPGA design flow, and indicates the required adjustments for sequential sim-
ulation. Chapter 3 discusses the design of the initial version of the simulator which
has been tested on a hardware platform, using an example design. The implemen-
tation of this design is discussed in chapter 4. Implementation specific issues for
the example are discussed in appendix B. Chapter 5 discusses PC-based tools, which
could provide in a method to connect the simulator with a PC, formulates selection
criteria and selects the best suitable product. Chapter 6 discusses the design of a co-
simulation system based upon the selected tool. The results of the implementation
are discussed in chapter 7.

CHAPTER

Background

This chapter introduces a number of topics, which are important for the SHILS dis-
cussion, they create the context for it.

Before describing the sequential simulator in detail, its role in the system design
process should be pointed out. Therefore, the normal system design process is dis-
cussed first. The sequential simulator is designed to aid in the verification process
of a design. Using the sequential simulator in an existing design does not require
many additional steps, but requires attention throughout the entire process.

SHILS is a co-simulation system. Co-simulation is discussed in general in sec-
tion 2.2.

The discussion of sequential simulation also introduces the sequential simulator
design of Rutgers [33] in more detail, focused towards usage of the simulator.

2.1 System design process

The design process is based upon the Waterfall model, which is briefly discussed
next.

The Waterfall model (shown in figure 2.1) is a very well known model, introduced
in 1970 by Royce [32]. In this iterative model, each successive step adds more detail
to a design. The main benefit of this approach is that the number of changes is man-
ageable, and it is possible to return to an earlier phase if unforeseen problems occur.
This process is referred to as feedback.

[Requirement analysis

Specifications

i

Implementation
ack P

Feedb

Figure 2.1: Waterfall model

8 CHAPTER 2. BACKGROUND

2.1.1 Digital System Design

The methodology of both ASIC and FPGA design are identical, the main difference is
the tooling which is used. Therefore, a design that shall be produced in an ASIC, is
testable in an FPGA.

A design can be specified at several levels, but most digital systems are designed
using a Hardware Description Language (HDL), specified at Register Transfer Level
(RTL). The sequential simulator also is designed at RTL. This discussion of digital
system design is therefore focused at RTL level.

Globally, the design process can be divided into three steps, as shown in fig-
ure 2.2. The Waterfall model is applicable to these steps, and to the internals of
the design phase. Verification of a design, the goal of SHILS, takes place prior to the
production.

Synthesis

Placement and routing

Production
Figure 2.2: Global design process

The synthesis phase translates the RTL design into technology dependent cells
that perform a certain function, like flip flops and multiplexers and deals with in-
terconnection of those cells. This is performed in two tasks:

1. Assemble all system parts to create a single integrated system
2. Translate the logic cells in the design to technology dependant cells
Subsequently, the placement and routing phase then performs two tasks:

1. Map the assembly of logic cells to a grid of available resources. In FPGAs the
Look Up Tables (LUTs) are mapped into a suitable physical position on the chip.

2. Connect the logic cells which are used in the grid of an FPGA.

In the end, the production phase generates a programming file for an FPGA.

The designer is mostly involved in the first phase. Tooling can solve the other
phases. In special cases, the designer influences the solutions of the tooling. Still,
designing remains an iterative process with feedback from previous phases, even
automated tasks generate feedback that should be used in preceding phases.

2.1.2 Tool chain

Several tools are used to ease the developers’ life in system development. This sec-
tion discusses the tools used for this project. For simulation, QuestaSim from Men-
tor Graphics is used. This tool, the successor of as ModelSim, is capable of simulating
RTL descriptions with a normal PC, which gives maximum flexibility at a reasonable

2.2. CO-SIMULATION 9

speed for behavioural descriptions. Bit-accurate, cycle-accurate simulations con-
sume quite a lot of time,

PrecisionSynthesis is used for synthesis. This tool, also from Mentor, is used to
translate a RTL description to industry standard Electronic Data Interchange Format
(EDIF). This describes the logic cells which will be used to physically realise the RTL
description.

Finally, the placement and routing phase is performed by Xilinx Integrated Syn-
thesis Environment (ISE). This tool accesses several tools internally:

1. ngdbuild, which combines all subparts into a single file combined with con-
straints.

2. map, which maps the logic cells to the actual cells.
3. par, which places the cells at positions on the FPGA and interconnects them
4. bitgen, which generates the programming file

The tool flow can be highly automated. This saves the designer time and in-
creases the ease of use, and a single command can be used to perform both synthesis,
and placement and routing.

2.2 Co-simulation

Verification of a design using SHILS is closely related to co-simulation. Therefore,
co-simulation basics are briefly introduced.

Embedded systems are often multidisciplinary, spanning between between pure
software design, pure hardware design and mechanics. These disciplines require a
combined methodology to create a system. Co-simulation is a powerful technique
in virtual prototyping to provide a solution for this [16].

Co-simulation is a simulation which spans across multiple disciplines, and can
be performed within a single simulation package capable of performing multidisci-
plinary simulations, or by connecting several simulators specific for each discipline.
For example 20-sim [6] and Ptolemy [4] can be used for multidisciplinary simulations.

A number of simulators specific to a discipline can be linked with a separate in-
frastructure that deals with interconnection of these simulators [10] or by linking
the simulators directly together [26].

Several co-simulation environments already incorporate a form of distributed
simulation. By distributing the simulation across multiple PCs, it is possible to in-
crease the overall simulation speed as the available processing power is increased.
A similar approach could be used to connect the sequential simulator in the co-
simulation environment although most co-simulation approaches use only software
for simulation.

2.3 Sequential simulator introduction

This section describes sequential simulation in more detail, using the SHILS approach.
Also, this section describes the sequential simulator design of Rutgers [33] in more
detail. The discussion is focused towards usage of the simulator, the detailed inter-
nals are not discussed. SHILS requires a revised approach to system design.

10 CHAPTER 2. BACKGROUND

The process of extracting memory elements from a design is extensively dis-
cussed by Rutgers [33, chapters 2 and 3]. Usage of the transformation tool is dis-
cussed in section 2.3.2.

2.3.1 Simulator design

The simulator framework designed by Rutgers is globally divided into four main
blocks. These are depicted in figure 2.3.

Control — Cont'rol — N
unit
Simulated
State Scheduler > Entity — Output
— Entity wrapper
Address P Y PP)
map T

Stimuli

Figure 2.3: Global simulator design

As shown, the simulator is wrapped around a simulated entity. The entity is not
an integral part of the simulator, it is purely for simulation of a specific Design Under
Test (DUT). To match the entity to the standard interfaces used by the simulator, a
separate wrapper is provided by the transformation tool. This wrapper also holds
the storage for the DUT’s state and deals with linking the entities of the DUT together
in simulation; the wrapper is discussed in more detail by Rutgers [33]. The wrapper
is controlled by the control unit and signals when the system can advance to a next
delta cycle when the DUT has stabilised after data of a next entity has been offered.

Input ports of DUT entities that are not connected internally must be supplied
with data. The stimuli input of the simulator provides this data. The simulator is not
equipped with any logic to check input data correctness at any moment, it requires
data to be ready at the moment it needs the stimuli. The output of entity instances
can be examined via the output port. The simulator control state is accessible via an
output port.

The simulator is controlled using a set of commands, i.e. “RUN CYCLE”, defined
by Rutgers. Another command is used to initialize connections between entities in
a DUT. For each connection, the arguments of this command specify:

+ Which input port reads from what entity instance?
+ Which input ports are connected to the stimuli input(if any)?
+ Which output port writes to what entity instance?

The information is used by the address map to fetch data from the correct memory
addresses of the DUT’s state storage in the entity wrapper. The scheduler is provided

2.3. SEQUENTIAL SIMULATOR 11

with a vector of entities that are dependant of the entity instance that is currently
simulated by the address map.

The scheduler determines which entity instance is simulated next. The imple-
mentation of Rutgers uses a fairly basic Round Robin scheduling mechanism.

The dependency vector is important for the scheduler as an entity instance might
change the input of a previously simulated entity instance, that must be re-scheduled
for simulation. Information on changed outputs is gained from the entity wrapper.
Re-scheduling is depicted in figure 2.4.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

System clock ! l |

Simulation clock

Simulatedentity (« X 2 X o X o X o X o X o X)
T T

Figure 2.4: Re-scheduling example

To improve performance, the simulator is pipelined. Several steps must be taken
before an entity instance can be simulated, which can be performed simultaneously
for several instances. Pipelining boosts performance of the simulator, it is capable of
processing an entity instance each clock cycle. These simulation cycles are referred
to as delta cycles. To complete a system cycle, the simulator must process simulation
of all entities for both the “high” period as well as the “low” period of the system
clock. This is also depicted in figure 2.4

2.3.2 Using SHILS

To start using SHILS, several steps should be followed. The entire system is too large
to simulate in an FPGA. Therefore, the top level description is not usable for simu-
lation, but it is the starting point in the design flow. The system design flow divides
into two separate flows, which is depicted in figure 2.5 and discussed next.

The flow of information indicated in figure 2.5 with “manual” must be performed
manually for now, as information that is described in the top-level description can-
not be extracted automatically yet [33]. The developer should extract the following
information manually:

1. How many entities are simulated?

2. How are entities interconnected?

3. What are the global clock and reset signals?
These questions are used in the translation process, and in the actual simulation
runs.

After design of the entity, the memory elements can be extracted from it and the

entity is transformed using the information gathered manually. That information is
also used to integrate the simulator in SHILS, which is implementation specific.

12 CHAPTER 2. BACKGROUND

Design Entity r

Transform Entity

Design Top-level

Partially automated

Integrate simulator

Synthesis

Placement and Route

Figure 2.5: Sequential simulator design process

Transform entity

Memory elements in an entity are automatically extracted by a transformation tool
delivered by Rutgers [33]. Besides the entity, the tool requires a number of basic
arguments:

+ The set of possible links between the ports of an entity
+ How to order ports internally
+ Specification of which signal to use for clock and reset

To specify these arguments, the information gathered in the manual sub flow(section 2.3.2)
is used. Rutgers defined additional arguments for several purposes [33, chapter 4].

This tool operates on EDIF files only. Therefore, the design specified in Very High
Speed Integrated Circuit Hardware Description Language (VHDL) should be synthe-
sized prior to transformation. The transformation tool requires a number of options
to be set in synthesis:

+ Do not generate 1/0 pads
* Preserve hierarchy

This is required for correct integration in SHILS after transformation. Precision-
Synthesis, which is used at the CAES chair, uses the following commands to set the
required options:

setup_design -addio=false
set_attribute -design rtl -name HIERARCHY -value preserve NAMEOFENTITY
update_constraint_file

Listing 2.1: Additional synthesis commands for entity transformation

2.3. SEQUENTIAL SIMULATOR 13

The transformation tool is run using a Makefile, which automatically executes
several steps to deliver several items:

+ Transformed entity in EDIF and Xilinx-proprietary NGO format® as well as
VHDL format that can be used for simulation.

+ Entity wrapper in VHDL format

*+ VHDL package with correct bit widths, port specifications etc.

Integrate entity in simulator

After transformation, the entity is integrated in the simulator. Some data widths are
not adjusted automatically and should be modified. The simulator integrated in the
rest of hardware design, described in chapter 3.

SHILS is then integrated and synthesised using the tool flow described in sec-
tion 2.1.2. The synthesis tool integrates the transformed entity into the simulator
during synthesis of SHILS.

Simulator usage

The synthesis tool generates a programming file which can be inserted in the FPGA.
Before simulation, several configuration variables must be set. The transformation
tool does not extract these variables automatically, the information gathered in the
manual sub flow (section 2.3.2) is therefore used. Configuration is done at run-time,
and can be changed if desired (reset is required). These configuration variables are:

Number of simulated entities The simulator is capable of simulating a certain maxi-
mum number of entities. This number is set manually in the simulator VHDL code.
Per simulation it is selectable how many entities are used for simulation.

Initialize connections between instances Inside the simulator, link memories are used
to store data for input of other entities. Per entity, three configuration variables
must be set. These are:

+ Which input port reads from which entity

+ Which output port writes to which entity

+ Which input port is connected to external stimuli (if any)
The simulator internally uses different memories to store the read and write actions
on entity ports. Therefore, these must be specified separately.

With these configuration steps, the simulation can be run. Of course, for input
ports of simulated entities that should be supplied with stimuli, data should be ready.

1Basically, the transformation tool could transform any FPGA technology. The current implementa-
tion can only translate Xilinx-based designs

14 CHAPTER 2. BACKGROUND

2.4 Related work

As introduced in chapter 1, research for simulation of large embedded multipro-
cessing designs has been extended with (at least partial) hardware-based simulation.
Several approaches exist, which are discussed in this section.

The software industry tends towards multiprocessor systems because of the “brick
wall” [21]. Compared to research in NoC and SoC verification, there are similarities
with ordinary software research in multiprocessing. FPGAs have attracted the atten-
tion of software researchers, too due to their flexibility and scalability. According
to Chung et al. [12] a slowdown of about 100x in an FPGA compared to a real multi-
processor is acceptable for software research. This figure is supported by figures of
Olukotun et al. [29]. Ideas used in this research field are also applicable in simulation
and verification of SoC and NoC designs.

2.4.1 Hardware emulation systems

There are several initiatives to port a basic multiprocessor system to an FPGA-based
platform and to realise a basic infrastructure for simulating a large number of pro-
cessors. For example the Research Accelerator for Multiple Processors (RAMP) project
[3], can simulate up to 1024 MicroBlaze processors. This project is heavily sponsored
by Xilinx and Intel, and has already delivered a few versions of a prototyping board,
like BEE2 [9]. This approach is costly, as a single board costs about 20.000 USD and a
complete simulation system is constructed out of several of these boards.

2.4.2 Sequential Simulation

Another — cheaper — approach is started by Chung et al. [11, 12] in the ProtoFlex
project. The ProtoFlex project is carried out in conjunction with the RAMP project.
They present a system which uses time-multiplexing to save FPGA resources and a
clever hybrid mechanism to keep implementation complexity low, running at the
BEE2 board [9]. The time-multiplexing mechanism used by ProtoFlex is very similar
to that of SHILS, an interleaved pipeline is used to sequentially simulate all CPUs
which are simulated. The idea behind the ProtoFlex approach is that computation-
intensive and often used tasks are performed directly on the FPGA, whereas less used
tasks are performed in software. The tasks that are executed by software are either
executed in a soft-core processor residing in an FPGA or in an external PC, connected
via Ethernet [12] to the FPGA board. A speedup of 39x compared to common used
multiprocessor simulation software is obtained [12].

Parashar and Chandrachoodan also present a sequential simulation framework
[31]. They present an algorithm intended to simulate synchronous systems of log-
ical processes, using events and a simulator to test their algorithm. The algorithm
is for simulation using very basic processing elements, and it eliminates the need
to sort the events of single queue event based simulation algorithms. Those pro-
cessing elements only support simulation of the straightforward Boolean functions
AND, NAND, OR, NOR, XOR, XNOR, and NOT, and simulation of an edge-triggered D-
flipflop. Nothing is stated about more complex operations. The cycle-true simulator
is transaction-based in which scheduling of processing elements occurs at compile
time.

The system is implemented using the Verilog Programming Level Interface (PLI)
to handle reading and writing of all events. A maximum of 64 processing elements

2.4. RELATED WORK 15

fits in a medium sized FPGA(Xilinx Spartan XC3S1200E) after synthesis. The pro-
posed algorithm is only tested in the ModelSim simulation software, not in physical
hardware.

2.4.3 Co-simulation

Several systems create a co-simulation system, a simulation system assembled of
both hardware and software. A considerable number of resources is required to im-
plement a complete simulator in hardware. Therefore, several initiatives propose
to use the versatility and power of an ordinary General Purpose Processor (GPP) for
stimuli generation and analysis combined with the parallel simulation capabilities
of FPGAs for the actual simulator.

The aforementioned ProtoFlex project [11,12] applies this form of co-simulation,
primarily to save time and resources from implementing rarely used functionality
in hardware. The key concepts behind this approach have been discussed in sec-
tion 2.4.2.

Another example of co-simulation is proposed by Ou and Prasanna [30]. They use
co-simulation in an entirely different manner; the novel aspect in their approach is
the usage of high-level cycle-accurate abstractions of a low-level implementation to
speed up the simulation process. MATLAB is used for the high-level abstractions.
The origin of their approach is in the increased usage of soft core processors on
FPGAs, and those processors are more customisable than normal processors. Certain
parts can easily be performed in hardware, whereas other parts are executed within
the soft core. By replacing the FPGA hardware with MATLAB connected to the soft
core, complicated calculations can be performed at high speeds with hardware en-
suring cycle-accuracy. Simulation of programs executing in a soft core processor is
difficult within low-level simulation software like QuestaSim, therefore execution
on a target platform is required to benefit fully from the speed-up.

Genko et al. [19] present another approach primarily intended for NoC feature
exploration. Their approach uses a Xilinx Virtex 2 Pro (v20) FPGA as hardware plat-
form to emulate NoCs. The system offers designers a platform to quickly character-
ize performance figures of a NoC, without loosing cycle-accuracy. A speed up of four
orders of magnitude compared to cycle-accurate HDL simulation is reached accord-
ing to the presented results. Different from other approaches is that this platform
is suited purely for NoC emulation. Within the FPGA, several NoC topologies can
be simulated without re-synthesis by software configuration. Primary results are
latency statistics.

The presented results are based on relative small networks; presented figures are
for a 2x2 mesh network. Scalability of this approach within a single FPGA is therefore
poor.

Other examples of co-simulation are introduced in [16] and [35].

The communication between multiple platforms is often limiting the perfor-
mance of co-simulation. The improved performance gained by running simulations
in hardware can be eliminated by communication overhead easily [13]. Chung and
Kyung present an algorithm to reduce the communication overhead between the
individual simulators in co-simulation [13]. Their algorithm allows the simulators
to run asynchronous if there are no transactions between the simulation models. In
order to predict the duration of the interval in which no communication is guar-
anteed, two methods are introduced by Chung and Kyung. One method focuses at
backward tracing of HDL models, whereas the other focuses at software code anal-

16 CHAPTER 2. BACKGROUND

ysis. Their approach reduces the amount of communication by a factor of 15 to 67,
which results in an overall speed-up factor of 4-40 compared to existing lock-step
simulation.

Co-simulation systems distribute functionality. One can argue that challenges
are similar to those of distributed computing systems; therefore the problems and
solutions discussed by Tanenbaum and Van Steen [34] for distributed systems, such
as data consistency and data distribution, are also applicable to the co-simulation
field.

Co-simulation can be performed by several co-simulation tools. A number of
these tools are discussed in chapter 5.

CHAPTER

Basic SHILS design

Earlier, it was not yet possible to test the simulator of Rutgers [33] in real hardware,
due to the lack of a physical interface with a controller (i.e. a GPP).

To connect the simulator shown in figure 2.3 with the physical world, a unified
interface should be used to offer a sturdy connection with simulator control and
analysis software.

3.1 System structure

The system is supplied with control and data by an external processor that is con-
nected to the simulator. In this way, the system shown in figure 3.1 is created.

FPGA
' N
Processor Simulator
Stimuli Generator
, «|| Stimuli buffer
Analysis of data | [¥ v
Output buffer
System control
L) System control
=)

Figure 3.1: Global System structure

The figure shows the division of tasks between the processor and FPGA, as pro-
posed by Wolkotte [39]. This balances both performance as well as flexibility. The
interfaces require buffering of the input stimuli, output data and control. These are
designed in the FPGA.

17

18 CHAPTER 3. BASIC SHILS DESIGN

Hardware design is related to the targeted technology. The simulator design
of Rutgers is not technology dependant, but the transformation tool is currently
tailored to Xilinx technology dependant EDIF files.

3.2 Design

The SHILS FPGA design consists of several blocks. This design also incorporates an
interface bridge for a GPP’s interface. Processors connected to an FPGA often operate
at different clock frequencies than the blocks in the FPGA. As a result of this, clock
domain transformations are required. This needs to be added to the implementation
of the glue logic for certain parts of the system, which is called clock stretching. The
blocks in which SHILS is divided are shown in figure 3.2, that also shows the primary
flow of data, control and state in the FPGA.
The hardware design of Rutgers [33] is extended with:

+ Stimuli buffer

+ Output data buffer
+ Control buffer

+ Interface bridge

The design of these aspects is discussed in the following sections.

s R

Output
buffer

Stimuli

buffer

(_,_r , (‘;.; P
to GPP Interface Control
bridge [f~----- buffer

Simulator

-+ Control — Data - - - State

Figure 3.2: System design block diagram

3.2.1 Stimuli

This section discusses general aspects of stimuli which are of importance for the
design of the stimuli buffer.

The inputs of simulated entities should be supplied with stimuli, i.e. data. Stimuli
can be assembled and offered to the simulator in various methods, which could be
divided according the quantity of data which is transported.

3.2. DESIGN 19

The least efficient method of offering stimuli to a system is by sending new data
precisely at the moment it is required to change. It is very impractical; as the tight
coupling requires that the producer and consumer of stimuli operate fully synchronous
or use a tight handshake mechanism. A more flexible link is required that decouples
production and consumption rates and times.

Stimuli are generated in a GPP as shown in figure 3.1. The operating frequen-
cies of the GPP and FPGA differ; clock domain transition signals that are fully syn-
chronous are hardly possible therefore. Because the amount of communication that
is required to keep the system synchronized is very high.

To reduce the communication overhead, several measures are possible:

+ Compress stimuli in time
» Produce stimuli in the FPGA

+ Compress stimuli in space

Compress stimuli in time

Stimuli will not change every clock cycle, therefore not every clock cycle a sample
should be transmitted. To be able to offer data efficiently in this case, a sample is ap-
pended with a time stamp. This time code directs the earliest moment at which the
stimuli buffer is required to offer the data to the simulator. Compression of stimuli
in time is also used by Wolkotte [39].

Adding a time code to stimuli requires additional storage and communication.
If stimuli is changing each clock cycle, this is not the best solution to reduce the
quantity of date that is transmitted. To reduce the number of bits needed for the
time code, relative timing could be used — the time code then signals the number of
clock cycles between two samples.

Produce stimuli in FPGA

To completely eliminate the clock domain transformation, the stimuli generator
could also be moved to the FPGA. This can greatly enhance the system’s perfor-
mance, but significantly limits the flexibility for the designer. This lowers the gen-
erator speed, as most FPGAs operate at much lower clock frequencies than GPPs.
A less restrictive solution is to generate a time code in the FPGA for stimuli that is
generated in software. Time compression is applied in this manner without the ad-
ditional communication overhead.

Compress stimuli in space

Data compression is a method which is often used to reduce the number of bits re-
quired to transmit data. Previously, no data compression methods have been ap-
plied to SHILS. As limited experience with data compression is available, this is left
as future work.

There is an important aspect on using data compression: the compression and
decompression processes require time, which could harm the performance of the
system. However, if a compression method is used that is efficiently to compress
and decompress, the amount of communication is cut down. This results in less
communication overhead and possibly higher SHILS performance.

20 CHAPTER 3. BASIC SHILS DESIGN

SHILS approach

As the addition of a timestamp has already been successfully used by Wolkotte [39],
it has been chosen to design the system using this approach. Time compression also
offers a lot of flexibility and configurability for the stimuli generation mechanism.

3.2.2 Stimuli Buffer design

Figure 3.1 shows that stimuli are generated in a GPP. The link between GPP and
SHILS requires the translation of the clock domain. The frequency at which stimuli
is generated and consumed differs. The producer and consumer of stimuli must be
decoupled for this reason too. Buffering is required to convert clock domains and to
decouple producing and consuming frequencies. By decoupling the operating fre-
quency of the simulator and stimuli generator, several issues are introduced, focused
towards efficient transport of the data through the buffer.

The buffer has to maintain data consistency — the order in which data enters the
buffer should be preserved. This avoids nondeterministic behaviour in simulation
and analysis. In many cases generates the stimuli generator blocks of samples, which
must be inserted in the buffer rapidly. For optimal data consistency, a useful feature
is an interrupt mechanism. When the buffer is almost empty, the processor has to
fill it fast. Another option is to temporary pause the simulator in the FPGA, but this
has a significant performance penalty.

The simulator has no facilities to control the input stimuli. It just expects data to
be available at the moment. Therefore, the buffer also has to be capable of extracting
the oldest element out of the buffer and offer it at the right moment in time to the
simulator.

Simulated entities can have multiple inputs, for example multiple ports of a router
in a NoC. SHILS should be able to supply data for all these inputs. When mutual ex-
clusion is ensured, a single buffer could be shared by multiple ports to reduce re-
source usage. The simulator knows which port accepts a sample at what moment,
therefore the same element can be offered to both ports simultaneously. Still, for
input ports which are accessed by the same entity at the same moment, separate
buffers or data outputs should be used. This also partially holds for multiple ports
within the same clock cycle, an identifier could be used to signal which entity needs
which data. The most straightforward method to create a buffer for all inputs is to
provide a unique stimuli buffer for each input port. This allows data to be consumed
by multiple input ports in parallel. Of course, this approach requires the most re-
sources.

A buffer, using the First In-First Out (FIFO) principle, is chosen for the stimuli
buffer. It preserves data ordering and — implementation dependently — offers the
buffer to be filled with blocks of data rapidly. This leads to the design shown in
figure 3.3. Future choices could lead to stimuli generation in the FPGA. The design
already includes facilities for the stimuli generation mechanism and stimuli source
selector, these are also shown in figure 3.3. The stimuli buffer is controlled by a
controller which manages data consistency and prevents data of being overwritten
or incorrectly read. The buffer is provided with separate read and write ports to
fully decouple producer and consumer.

3.2. DESIGN

p
Select Timecode
—— stimuli FIFO buffer —
Data in source checker Data out
: Control
Stlmuh Buffer .
generator Stimuli buffer
L Processor clock | Simulator clock

~

Figure 3.3: Stimuli buffer block diagram

Stimuli buffer output timing

21

As noted, the simulator cannot control its stimuli input, it expects data to be avail-
able. A separate component is introduced to offer stimuli at the designated moment
to the simulator: the time checker. This component compares the current time with
the timestamp of the stimuli element that is the oldest in the FIFO buffer.

Buffer empty

Data is
already copied

Wait until rising_edge(clk) —_———

Buffer
empty?

Timecode
<= time?

Current
stimuli valid

Data in
register?

Figure 3.4: Time checker flowchart

22 CHAPTER 3. BASIC SHILS DESIGN

It monitors the top register of the FIFO buffer, and copies its value to the output
of the stimuli buffer at the intended moment. The process of checking the timestamp
is depicted graphically in figure 3.4. To decouple the stimuli buffer and simulator,
the checker does not offer stimuli directly to the simulator, it only extracts the cor-
rect sample from the buffer. The precise moment at which it is offered is arranged
by the interface bridge. Data is ready within one delta cycle.

Timing is important in this stage. Based on [33, figure 5.2], timing of the sim-
ulator regarding stimuli is shown in figure 3.5. To clarify the steps, a single flow
through the pipeline is shown. In reality, each delta step a new address is generated
and thus a sample should be available.

t=0 t=1 t=2 t=3 t=4 t=5

Simulation clock
Step signal of simulator controller

|

Generate next address (X)addr)
Fetchinput (XXX ¥ val X XXX)

Input data and state registered { XXX X val X XXX)

Simulation | |
Output of the entity { XXX

Stimuli related
Read address { X X XXX)

Stimuli ready |

Figure 3.5: Timing diagram based on Rutgers [33]

After the controller of the simulator has given the “step” signal, the address of
the instance that is simulated next is generated. It is available at the next rising edge
of the clock. If the instance corresponding to the generated address requires stimuli,
datais copied from the output register of the stimuli buffer to the stimuli input at t=1.
This is determined by the developer. At t=2, is the stimulus ready for the simulator
and copied to an internal register. At t=3, all data is ready for simulation, thus the
actual simulation is performed at this moment in time. At t=4, the simulation of this
delta cycle is done.

The simulator is pipelined. This indicates that stimulus must be buffered for 2
clock cycles in the pipeline.

3.2.3 Output buffer design

The design of the output buffer is similar to the input buffer design, except for the
control logic. The simulator is not equipped to control the write cycle, the buffer
controller provides this feature therefore. The mechanism is straightforward; it will
store the data with the current simulator time in the buffer on data changes.

3.2. DESIGN 23

All data in the buffer should be accessible. Therefore, the entire buffer contents
must be readable by the processor, which makes it similar to the producer side of
the input buffer.

3.2.4 Interface bridge design

To connect all hardware parts with a GPP, an interconnection block is required. This
provides glue logic to translate the data signals, which are used in the hardware, to a
unified interface that connects to the GPP.. Also, clock domain translations are per-
formed by the buffers of the interconnection logic. Clock domain transformations
for the system’s control are performed by the control buffer. This buffer retains the
same value for a minimal of one SHILS simulator clock cycle, which implies that this
is the maximum frequency at which new commands can be issued by a GPP. In this
way it is ensured that the command is received correctly.
The interface bridge connects the external interface to:

« Stimuli buffer

» Output buffer

+ Simulator control via clock stretch buffer
» Simulator state

Also, the connector manages the overall system and provides internal connec-
tions between certain parts. Therefore, it is referred to as system controller in the
implementation.

SHILS incorporates several buffers that are externally addressed using Memory
Mapped In-/Output (MMIO). To connect a GPP easily to the internal MMIO interface,
the external interface for SHILS is also a MMIO interface. This provides in a direct
link between the GPP and the internal buffers. Glue logic provides for integration
of the internal MMIO interfaces. It is a common practice to use MMIO in systems
consisting of both a processor and dedicated hardware for communication between
them. MMIO has proved itself thoroughly in the past in numerous applications.

MMIO interfaces come in several sorts. To provide the simulator with a universal
access method for multiple platforms, an additional glue logic block is added that
holds the interface for a specific platform.

CHAPTER

SHILS Implementation

To gain more feeling with the basic FPGA/ASIC design tool flow and to have a good
example of the challenges for the tool developer, an example is used for the imple-
mentation of the basic simulator design discussed in chapter 3. An Infinite Impulse
Response (ITR) filter is used for this purpose. A filter type often used in digital sig-
nal processing. More detail about the filter and its implementation is discussed in
appendix B. For a more straightforward implementation of the IIR filter in the sim-
ulator, tweaks are used in the system implementation.

For future scaling possibilities, the design is made suitable for a large variety of
platforms. This implementation, however, is created for a specific platform, which
is discussed next.

4.1 Platform

The simulator is tested on a platform that consists of both hardware and software, to
provide both flexibility and performance to the developer. The implementation is
tailored for a verification platform referred as Basic Concept Verification Platform
(BCVP), shown in figure 4.1.

The platform is constructed with a Xilinx Virtex 2 FPGA (3000 series) and two
ARM9 processors (an ARM920 and an ARM946 processor). A single processor is used
for this first application, as the test simulations are very basic and do not require
many resources. The processors and FPGA operate at a frequency of 86 MHz.

The FPGA and processor are connected via the Advanced High-Speed Bus (AHB)
bus and External Bus Interface (EBI), providing the processor with a direct memory
interface to communicate with the FPGA. This is referred to as MMIO.

Besides the connection to the processor(s), the FPGA also offers a test/debug
interface which is connected to LEDs.

For more information on the BCVP platform, see [5].

25

26 CHAPTER 4. IMPLEMENTATION

MENUE

DECKER MOMZA

Figure 4.1: BCVP platform

4.2 Hardware implementation

The features of the BCVP platform, which are used by the hardware, are:
+ EBI interface
+ Test interface
+ Clock divider

This leads to a system structure shown in figure 4.2 combined with the simulator
design discussed in chapter 3. The simulator functions at a lower frequency than the
ARM processor on the BCVP platform. To be more precise, the simulator operates
at a frequency 13 times slower than that of the ARM and MMIO interface. The clock
division is provided by a clock divider block in the FPGA and used therefore.

As discussed in section 3.2.4, a universal interface is required for easy adapting
to a new hardware platform. The BCVP platform specific parts can be replaced easily
with a specific interface for any other platform. The topmost level in the implemen-
tation is the BCVP specific interfaces. These interfaces are defined in figure 4.3.

4.2. HARDWARE IMPLEMENTATION 27

——— Test logic BCVP platform FPGA

Test (0

Stimuli Simulator Output
Clock buffer buffer
clock transform T T
% L
EBI . Memory Control
interface Glue lo{glc B L Map [buffer }
T
Universal data/ System controller
address bus J

Figure 4.2: FPGA System implementation block diagram

([BCVP platform interface |

— clk Data b—F—
— | reset Test ;/;)
——) notoutput enable IRQ [———

—)| not write enable
———) not chip select

——— not byte select 0
———) not byte select 1
———) not byte select 2
———) not byte select 3

——#—3 Address

\. J

Figure 4.3: BCVP port spec

4.2.1 System Controller

The required universal interface is provided by the system controller, which is con-
nected to the top level entity using the ports specified in figure 4.4.

The EBI interface of the BCVP platform maps easily to this interface by logic that
converts the EBI-specific signals to the universal interface. For example, the write
enable signal is formed by a logic ’AND’ operation of the inverted EBI signals write
enable and chip select.

For ease of implementation, the read and write data is divided into two signals
instead of a bidirectional bus. It is not possible to simultaneously read and write
from the bus, as the data bus of the EBI interface is bidirectional.

This part of SHILS structure is named system controller, as it provides the con-
trol of all system parts and interconnects of these parts. Besides interfacing with
the hardware platform, the system controller provides interconnection of the other
system parts listed on the next page.

28 CHAPTER 4. IMPLEMENTATION

System Controller
— | ARM clock read data —F4——
— | simulator clock read valid F———
— | reset
——#4——> write address
——#—3 write data
— | write valid

——#—3 read address

\. J

Figure 4.4: System controller port specification

« Simulator
« Stimuli buffer

+ Output buffer

The VHDL implementation instantiates these parts from within the system con-
troller as components, which is depicted in figure 4.2,

SHILS is externally is controlled by a GPP over a MMIO interface. The MMIO
interface has been chosen as it provides for a direct connection between the GPP
and the stimuli and output buffer. The memory interface is used to control memory,
which is efficiently and fast in the test platform. This interface is discussed in the
next section.

The BCVP platform is equipped with an interrupt connection to the ARM proces-
sor. The system controller does not use this interface; this is left as future work.

4.2.2 Memory-Mapped I/0 interface

Memory-Mapped 1/0 provides a robust interface for the processor to connect to the
hardware. A dedicated section of the processor’s addressing range is assigned to
external hardware for this purpose. In the BCVP platform this address range is from
0x30000000 Up to 6x301FFFFF. The sequential hardware-in-the-loop simulator requires
only a small number of the available addresses. The addressing space is divided into
16 blocks, of which 4 are used, like shown in figure 4.5. For now, this provides for
sufficient addressing space. This division is made by using 4 bits in the upper region
of the address vector.

The physical platform used for the tests has a defect in its EBI interface. Bit 13
of the address bus is defect and replaced by shifting bits 18 downto 14 a position to
the right. The primary address division is made using bits 16 downto 13 instead of
15 downto 12. By the shift introduced by the physical defect, no awkward transfor-
mations should be made in addressing; only a conversion to byte addressing is still
required.

For easy programming, read and write of the same data is put on the same ad-
dress but distinct values are separated. This is shown in appendix A; tables A.1
and A.2.

4.2. HARDWARE IMPLEMENTATION 29

32 bits
Data to stimuli buffer
Data from output buffer
Echo register

System state and control

0xF000
OxFFFF

0x0000
0x1000
0x4000
0x5000
0x8000
0x8001

Figure 4.5: Global address space division

4.2.3 Simulator

The simulator connects with the system controller through an interface specified by
Rutgers [33], shown in figure 4.6.

(Simulator)
— | clok Stimuli bus gF—F4—
—— | reset Entity output ——#——
—4—) Stimuli Simulator state —F4——
———#4—> Simulator control

Figure 4.6: Simulator port specification

For more information on port naming and specification, see [33]. Several of the
ports are design specific and therefore are not specified in detail. The reset mech-
anism of the simulator is active-low, whereas the rest of the system uses active-high
reset. Active-high reset is used as this is considered more intuitive.

4.2.4 Stimuli buffer

The FIFO principle is used by stimuli buffer to store stimuli, as noted in section 3.2.2.
Circular addressing is used to reduce the amount of required addresses in the buffer.
Circular addressing moves the pointer of the buffer to the start address when the end
of the buffer has been reached.

Writing new data is performed at the clock frequency of the GPP connected to the
FPGA, whereas retrieval of data is at the clock frequency of the simulator. The fre-
quency at which data is produced and consumed also differs. Therefore, the buffer
provides for separate read and write ports. Pointers are used to indicate which el-
ements have been written and which elements are read. The buffer controller pre-
vents that the read pointer can pass by the write pointer. To provide the producer
(the GPP) with unlimited access to the buffer’s memory, the input side of the buffer
is fully addressable by the GPP. Several elements can be written to the buffer before
the pointer has to be updated. This allows for large quantities of data to be written

30 CHAPTER 4. IMPLEMENTATION

at once. The GPP must prevent the write pointer from passing the read pointer; this
is not done by the controller.

For initial testing of SHILS at the BCVP platform, stimuli generation in the FPGA is
not required. Therefore, the implementation does not support selecting the source
for stimuli. Also, the interrupt is not implemented, as no interrupt handler is avail-
able.

To control the state of the stimuli buffer, two record types are introduced in this
implementation, specified in listings 4.1 and 4.2. All elements are data words, 32 bits
wide. Using these types, the ports of the stimuli buffer are specified as shown in
figure 4.7.

The stimuli buffer instantiates the timecode checker internally. Therefore, it is
not depicted in figure 4.2.

type fifo status t is record

size : word; -- Total capacity

full : word; -- Number of filled positions
empty : word; -- Number of available positions
ptr 1 word; -- Current address position

end record;

Listing 4.1: Status type specification

type fifo status upd t is record
ptr : word; -- New pointer position
valid : std_logic; -- Write enable

end record;

Listing 4.2: Control type specification

Stimuli buffer

——| reset data to simulator —+#4——
4%32

— | simulator clock buffer state |——#

——#—3| simulator state IRQ [——

—— | memory map clock

32+1

———#4——3 bulffer control

12

———#—3| address from ARM

32

———#—3 data from ARM

— | Write enable

\ J

Figure 4.7: Stimuli buffer port specification

4.2.5 Timecode checker

The timecode checker compares the timecode of the topmost sample in the stimuli
buffer with the current timecode of the simulator. The timecode is checked using
a combinatorial path. The sample is copied to the output of the timecode checker
immediately to avoid delay if the timecode matches the current time. The sample is

4.3. SOFTWARE IMPLEMENTATION 31

also copied to a register that is used in the following delta cycles if the sample is still
valid. This avoids incorrect consumption of data. The ports of the timecode checker
are specified as shown in figure 4.8.

e Y

Timecode Checker
—— | clock data out —F—

—— | reset read acknowledge ————
——#4— simulatortime buffer empty ————
——4—>| stimuli in
——~—| buffer state

\. J

Figure 4.8: Timecode checker port specification

As noted in section 3.2.2, the timecode checker delivers data to the system con-
troller, which determines the precise moment at which the data is offered to the
simulator. This moment is determined using two signals in the state port of the simu-
lator, named prefetch_stimuli and prefetch_stimuli_valid. The first signal identifies
the instance that will be simulated after three clock cycles. When the signal is valid
(prefetch_stimuli_valid becomes high), the stimuli element for the corresponding
identifier should be offered to the stimuli port of the simulator.

If ADUT has multiple external inputs, a shift register must be used to offer data at
the correct moment to the simulator. The IIR filter only has a single external input.
Therefore, the identifier check and shift register are not implemented.

4.2.6 Output buffer

For analysis of the simulation afterwards, the output of the simulated entities is
stored in a FIFO buffer also. The implementation of the output buffer is based on
the implementation of the input buffer. The controller extracts the current time
from the state of the simulator. It is coupled to the output of the current entity and
stored in the buffer. For fast consumption, the entire address space of the buffer is
accessible by a GPP, but for data validity, only addresses which have been written
may be read. The GPP must prevent this by verifying that the read pointer does not
pass the write pointer. The controller of the output buffer prevents that data is writ-
ten before being read. The controller can set the interrupt flag at a certain capacity
level, to prevent buffer overflow, but this is not implemented.

The output buffer interface is specified as shown in figure 4.9, using the type
definitions of listings 4.1 and 4.2.

4.3 Software implementation

The software is intentionally kept basic, as the test case is very basic. This means
that several steps, which could be eased with procedures and functions, are left for
future implementation and have to be performed manually for now. An exception
is made for the initialisation procedure of the bridge with the FPGA, as this will be
used often.

To access the memory portion reserved for the simulator in the FPGA, a structure
is used. This is specified in listing C.1.

32 CHAPTER 4. IMPLEMENTATION

Output buffer
———— memory map clock data to ARM —#~A—
— | simulator clock buffer state [—~—
——)| reset IRQ F—>
——#—| read address acknowledge |———

——#4—3 buffer control
———#—3 data from simulator
——#—3 simulator state

\. J

Figure 4.9: Output buffer port specification

The structure is initialized in a precompiler directive, which places the memory
map at the correct start address. For readability, several portions are divided in an
own structure. For example the simulator state and control are specified as shown
in listings C.2 and C.3. For more information on the definition of these variables
see [33].

In contrast with the hardware implementation, the variables like read_from are
not yet assembled of record structures. C is byte-oriented, not bit oriented like
VHDL.

To verify the behaviour of the memory map in all regions of the addressing space,
the hardware implementation returns debugging data at several positions. The mem-
ory position of the test registers is specified in listing C.1.

4.3.1 Configure connection

Before the ARM processor can use the connection with the FPGA, the connection
must be configured correctly. The function bridge_init configures the interface in 5
steps:

1. Configure (Parallel I/0)PIO clock

2. Enable PIO clock

3. Configure PIO Reset

4. Reset PIO

5. Configure memory controller

a) Configure Setup time
b) Configure pulse time
c) Configure total cycle duration

d) Configure read/write mode

For a detailed description on these configuration variables, see [24].

4.3. SOFTWARE IMPLEMENTATION 33

4.3.2 Test connection

To verify whether the connection has been configured correctly, the test registers
that exist in the memory map listing C.1 are examined and compared with the ex-
pected value. This is included in the function bridge_init().

4.3.3 Configure simulation

After initialization of the connection with the FPGA, the simulator is stopped to con-
figure the simulation. The number of entities which are used for this simulation are
set by issuing the command ENABLE on the address ex3e0Fe3e0 and writing a value to
memory address 6x3e0F0304. After enabling a number of entities, links between en-
tities are created. A function is created for this purpose which is listed in listing C.4.
This function issues several commands according to section 2.3.2:

1. Command CREATE_LINKS at address 0x300F0300
2. Instance address at address 0x300F0304

3. Instance reads from at address 6x300F0308

4, Instance stimuli mask at address ox300Fe30cC

5. Instance writes to at address 0x300F0310

4.3.4 Run simulation

With all settings created, stimuli should be inserted in the stimuli buffer before
performing the actual simulation. Stimuli is copied to the an address in the range
0x30000000 up to 0x30010000, and the write pointer is updated afterwards by writing
the new pointer value to address ex30eFeeec.

Further description of the C code for the IIR filter can be found in appendix B as
this is design specific.

CHAPTER

Tool evaluation for
Hardware/Software
co-simulation

The design and implementation discussed in chapters 3 and 4 is actually the design
of a co-simulation system. Basic ideas of co-simulation are discussed in section 2.2.
Previous work has shown that stimuli generation significantly increases the load
on a processor [39]. A PC is equipped with a greater amount of processing power;
the amount of processing power available for other tasks is far greater than in the
embedded processor. A PC will be used to replace the embedded processor as shown
in figure 5.1. Also enhanced stimuli generation is possible. Using a PC also opens up

Computer(MATLAB) (FPGA)
Stimuli Generation Stimuli buffer
y S\
Data Analysis N -’ Simulation
System control Output buffer
- J & J

Figure 5.1: Co-simulation system structure

extended capabilities to perform data analysis in various tools. Several tools can be
used for the connection of a PC to SHILS, which are compared in this chapter.
MATLAB is sometimes already used in initial design stages for algorithm explo-
ration and other tests. To be able to reuse previously made test benches (in MAT-
LAB), MATLAB is used to generate the stimuli and analyse the output data. Some-
what equivalent to the computing capabilities of MATLAB is GNU Octave [18], but

35

36 CHAPTER 5. EVALUATING CO-SIMULATION TOOLS

that application is not directly equipped with co-simulation facilities and therefore
not discussed in the context of this thesis.

5.1 Requirements

An important aspect is the operating method of SHILS. Implementations so far use
a data pushing method to keep the simulator supplied with sufficient stimuli (chap-
ter 3,[39]). This method is used to maximize data throughput. The simulator expects
data to be ready for it all the time; therefore the synchronization mechanism is im-
portant. To reduce communication overhead, it is desirable to send a large quantity
of data at the same time to the simulator input buffer. MATLAB is generally used
sequentially, but can function perfectly asynchronous.

The current implementation of the SHILS external interface is a MMIO interface
(chapter 3). This enables transmission of data via a unified interface. Minimized
effort in migration of the interface in both hardware as software towards the new
co-simulation system is an advantage.

The tool discussion assumes that MATLAB is used for stimuli generation, and
the tool is used to arrange the connection. However, MATLAB can also arrange the
connection. It is discussed as an option for this reason.

5.2 Criteria

The tools to connect SHILS with MATLAB are evaluated according to multiple cri-
teria. These criteria are based on the aforementioned requirements. In the tool
comparison is the interface that will be used to connect SHILS not decided.

Damstra has defined key factors which define a good co-simulation system [16].
These key factors are purely focused on software-based simulation. The key factors
of Damstra have been used to formulate the tool evaluation criteria, they are modi-
fied to apply to hardware connectivity, effort to use and performance. The criteria
have influence on each other and partially overlap.

The criteria are evaluated individually. The majority of the criteria are evaluated
using an ideal solution that is best for each specific criterion, resulting in ++, +, o, -,
-- or - to indicate how a specific product relates to the ideal. The ideal for each
criterion is discussed below. Criterion 3 and 7 cannot be judged in this manner, they
are judged upon available features.

1. Hardware connectivity possible ~ This criterion expresses whether the tool can con-
nect with hardware by default. It is desirable that connectivity with hardware can be
enabled without great effort. The best case is that connectivity can be automatically
arranged/generated.

2. Interaction with multiple simulation tools/platforms (e.g. QuestaSim and hardware) ~ This
criterion concerns the possibility of the evaluated tool to interconnect multiple sim-
ulation tools or hardware platforms. An example application is the use of QuestaSim
for functional and short simulations and SHILS for bit accurate cycle-true long sim-
ulations. This feature is an advantage as one could replace QuestaSim with SHILS
transparently to the end user. In the best case, the tool arranges the interconnec-
tion and replacement without great effort.

5.2. CRITERIA 37

3. Supported I/Oprotocols This criterion concerns the different methods which could
be used to connect the tool with hardware. This is closely related with the physical
interface used by SHILS, as is must connect with software over this interface too.
The evaluation of this criterion only lists the possible protocols, as the comparison
of tools is performed independently of the platform used and thus the physical in-
terface used.

4. FPGA integration This criterion concerns the required effort to embed the con-
nection with the tool in the SHILS hardware design. In contrast with criterion 1, this
criterion judges whether the SHILS hardware design integrates well with the con-
nection in the FPGA. Integration without a great deal of effort is best, preferably
automatically generated.

5. Performance This criterion concerns the performance of the system. Appraisal of
this criterion is based on the other criteria.

The performance of the entire system is dependant on the performance of the
communication between PC and FPGA and can be measured by data throughput and
overall simulation time.

6. Communication overhead This criterion concerns the communication overhead.
Some tools introduce significant communication overhead, whereas others handle
this efficiently. This criterion is assessed relative to the other tools. Of course, little
or no overhead is best.

7. Synchronisation mechanisms ~ This criterion concerns the methods which could be
used to provide synchronization between tool and hardware. Synchronization is
mainly performed either by time synchronization (tightly coupled) or by using a
data-push approach. This criterion lists the options offered by the tools.

8. Initial SHILS deployment effort This criterion concerns the effort that is required
to set up the co-simulation system using the tool and SHILS for the first time. Low
effort is better.

9. Deployment effort of a new simulation model as DUT for SHILS This criterion deals
with the effort that is required to perform simulations using SHILS on a new DUT.
Also for this criterion applies that low effort is better.

10. Parameter adjustment effort This criterion deals with the effort that is required
to adjust parameters, for example the coefficients of an IIR filter or the topology of a
NoC. It is desirable that this can be achieved without synthesis. This is highly imple-
mentation dependant, though. Stimuli generation is not considered in this criterion
as the interconnection tool does not influence the stimuli generation process.

11. Embedding of co-simulation into the normal design flow This criterion deals with the
effort that is required to embed the usage of SHILS simulation in the normal system
design flow described in section 2.1.1. Easy embedding is desired, also regarding
usage of tools in earlier design phases and reusing testbenches.

38 CHAPTER 5. EVALUATING CO-SIMULATION TOOLS

12. Cost Although not a primary criterion, this criterion concerns the cost involved
in deployment of one of the tools. Both initial purchase cost and recurring costs are
considered.

5.3 Selected tools

The tools discussed originate from several disciplines. All tools have possibilities for
co-simulation. The discussed tools are:

« The Mathworks: MATLAB & Simulink

Xilinx: System Generator for DSP

Altera: DSP Builder

Chiastek: CosiMate

UC Berkely: Ptolemy II

Virtutech: Simics

« Manual solution

The tools provided by Xilinx and Altera are MATLAB toolboxes, which require
MATLAB to function properly. Sometimes is constructing a solution manually the
best solution. This option is considered too. The manual solution deals with the
problems encountered in the discussion of the other tools.

5.4 MATLAB

MATLAB [27], created by The Mathworks, is commonly used in both industry and
research for its computing capabilities in several application areas. Its computing
capabilities are extended by various toolboxes to connect MATLAB with external
tool and hardware, and perform tasks specific for an application area (e.g. Financial
Modelling). The collection of toolboxes is quite large. A small selection with self-
explanatory names consists of: “Instrument Control Toolbox,” “Image Processing
Toolbox,” “Signal Processing Toolbox” and “Control System Toolbox”. Within MAT-
LAB, Simulink offers an environment to apply model-driven design in arithmetic and
analysis. Models in Simulink are created in an interactive graphical environment in-
stead of using the scripting language of MATLAB. Simulink comes with a customiz-
able set of block libraries for various application areas. Complicated operations and
transformations can be used to graphically create a model, which can be used for
calculations.

MATLAB is often used to explore and test the behaviour of systems at high levels
of abstraction, where calculations needs to be performed without timing and/or bit
accuracy like algorithm testing, signal processing and analysis and much more. At
the University of Twente, MATLAB is used for various projects and purposes, in-
detail knowledge on MATLAB is therefore available.

The collection of MATLAB toolboxes extends in the field of Digital Signal Processing
(DSP) design, and also FPGA design for co-simulation with reconfigurable hardware
and hardware oriented simulators. There is a coupling possible with several Electronic

5.4. MATLAB 39

Design Automation (EDA) tools, like QuestaSim (successor of ModelSim) which is dis-
cussed in section 5.4.1.

Besides the toolboxes that are sold by The Mathworks, MATLAB is also extended
by several FPGA hardware vendors like Xilinx and Altera. These products are dis-
cussed in sections 5.5 and 5.6. Both Xilinx and Altera, with respectively System Gen-
erator and DSP builder, sell toolboxes which bring FPGA functionality and tools to
MATLAB. Both vendor specific tools are primarily targeted at DSP applications, but
are also provided with various blocks for HIL simulation.

5.4.1 MATLAB EDA link MQ

EDA link MQ [26], also from The MathWorks, enables a designer to use the simulation
capabilities of QuestaSim for hardware designs combined with the computational
power of MATLAB for control, signal processing and data analysis. The inputs and
outputs of a DUT are connected to structures in the MATLAB workspace, providing
the end user with a transparent interface, and a callback routine to control the DUT
in QuestaSim from MATLAB.

The features of EDA link MQ enable the creation of test benches (figure 5.2a)
for QuestaSim in MATLAB. Furthermore, EDA link MQ enables embedding MATLAB
functions in simulations in QuestaSim (figure 5.2b). Wrappers are provided for both
options.

~

stimuli response
EEE—
| HDL Simulator |
Output Input
arguments Arguments MATLAB
HDL entity S, component ==—p
function
)
MATLAB
- J
(a) MATLAB testbench wrapper (b) QuestaSim wrapper

Figure 5.2: MATLAB QuestaSim toolbox diagram

The toolbox can be used in two methods, a universal method based on TCP/IP
and a dedicated one using shared memory. QuestaSim operates as client for MAT-
LAB. The direct memory connection provides the best performance, but the TCP/IP
version offers distribution of the simulation across multiple PCs. MATLAB can oper-
ate at one PC as server, serving multiple QuestaSim clients. In theory, it should be
possible to replace the client (QuestaSim) by a hardware simulator when connect-
ing using TCP. However, there is no specification of the protocol used, which makes
engineering an interface for this protocol quite difficult.

A number of disadvantages and pitfalls of this product are discussed by Gestner
and Anderson [20]. Creation of test scripts is quite difficult, as users are required
to monitor the progress of the simulation by communicating through test vectors,
which is not very intuitive. Furthermore, the need to signal QuestaSim every clock
cycle introduces a lot of communication overhead. Both of these problems are solved
by the open source solution of Gestner and Anderson [20]. As their solution is in-

40 CHAPTER 5. EVALUATING CO-SIMULATION TOOLS

tended solely for software-only simulation, their connection is using a memory con-
nection, it is not considered further.

5.5 Xilinx System Generator

Xilinx offers several tools to help a developer. One of these is System Generator,
which is a MATLAB based DSP design tool, which can generate hardware configu-
rations for a design [42]. In this manner, the model-driven design can be used to
develop a (sub)system by drag-n-drop methods in Simulink.

A model in Simulink can be constructed out of ordinary DSP building blocks such
as adders, multipliers and hardware, but also using more complex blocks or custom
hardware [43]. Custom hardware can be added as a black box, so that it is included
in synthesis. The Simulink model can communicate using MATLAB connectors with
the custom design. The sequential simulator can be viewed as such a black box, a
component in the design.

System generator can either generate a HDL file to be included in a HDL design,
generate a synthesised netlist (the Simulink model is then the top-level entity) or
generate components that apply HIL co-simulation directly. The latter option inter-
nally generates HDL code, synthesizes it and provides the FPGA programming file.
With System generator, it is possible to realize both the hardware (FPGA/VHDL) and
connection to MATLAB at once [17].

The features offered by System Generator can be used to easily create hardware-
in-the-loop simulation for various Xilinx-based target platforms. For this task, a GUI
is provided (figure 5.3) .

Xilinx System Generator can be used to generate hardware only for Xilinx FPGAs.
This is a big disadvantage for flexibility and versatility, but not a very big problem
within the CAES chair as primarily Xilinx FPGAs are used. Also, the transformation
tool of Rutgers [33] is currently only equipped for Xilinx FPGAs.

5.6 Altera DSP Builder

Altera offers DSP capabilities for FPGA developers with the DSP Builder product.
Similar to System Generator, a model can be created in Simulink which can be in-
serted in an FPGA after synthesis, and used for co-simulation. Of course, usage of
this tool requires that Altera FPGAs are used. The features offered by Altera’s prod-
ucts [1] are similar to those of Xilinx System Generator, no differences have been
found in the specifications of both.

5.7 CosiMate

Chiastek offers CosiMate, a product capable of connecting multiple tools together
for a co-simulation system using a unified backplane. A GUI is provided to connect
the products that are used for a simulation.

By default, CosiMate provides a connection to its backplane for several simula-
tion packages [10], originating from various disciplines:

+ The MathWorks: Matlab/Simulink

+ Telelogic: Tau G2 (Model-driven software design)

5.7. COSIMATE 41

S=E]

— Compilation Cption:
Compilation :

HDL Netlist ke Setfings...

Pt MEC Nebist

Bitstream
= EDK Export Tool

IET Hardware Co-Simulation » Ethemet b |

@ Timing Analysis MLS06 »

Syrﬂr MicroBlaze Multimzdia Board Video Starter Kit
Spartan-3A D3P 18004 Starter Platform b

45T z Spattan-3A D5SP 34004 Development PlatForm »

" Create testhench XtremeDsP Development Kit »

bwebg
— Clocking Options

New Compilation Target. ..
FPGA clock period (ns) @

|25 I’\xe-;l
Muttirste implementation DM input clock period (ns)
Jelock Enables =] Jim

I™ Provide clock enable clear pin

Guerride with daubles : According to Block Seftings |-

Simulink system period (sec) |1—

Elock icon display: Im
Generate | OK | Apply | Cancel | Help |

Figure 5.3: Xilinx System Generator targets

Telelogic/I-Logix: Statemate Magnum (Graphical embedded system design)
+ Synopsys: Saber Designer (Dynamic systems simulator)
+ MSC Software: Easy5 (Dynamic systems construction)

+ Imagine: AMESim (Mechanics simulation)

Mentor Graphics: QuestaSim (Digital Hardware design simulation)
+ Cadence: NCSim (Digital Hardware design simulation)
CosiMate offers interfaces for several languages:
o C,CH+
+ Hardware Description Languages: VHDL, Verilog
* SystemC

CosiMate is the master in the system and handles synchronisation issues for the
end user, the backplane synchronizes with each simulator individually to allow for
each tool to operate at its own frequency. If desired, CosiMate also has the option to
operate all tools fully synchronous by tight coupling.

Connections between simulators can be made using TCP, UDP or RCP. Networked
simulation is therefore possible, making it possible to open a connection with the
sequential simulator over TCP/IP or similar. Backplane connections with other,
not supported, simulators can be created using the CosiMate Interface Development
Tool. SHILS can be connected either using the Interface Development Tool. Reverse
engineering the communication protocol that CosiMate uses is not needed. Still,
hardware needs to be developed to connect to the CosiMate interface.

42 CHAPTER 5. EVALUATING CO-SIMULATION TOOLS

CosiMate should allow for both functional and synchronised co-simulation, but
this is not yet possible in current tool releases according to Damstra [16].

Future development is an asynchronous mode to connect sequential and event
driven simulators.

5.8 Ptolemy

Ptolemy is a long lasting project of UC Berkely, it can be used without cost for aca-
demic and commercial purpose. Ptolemy can be described as “An extremely exten-
sible, heterogeneous simulation and prototyping system with a sophisticated graph-
ical interface” [22]. This description is far from complete, but important to notice
is that the objective of Ptolemy II is “to support the construction and interoperabil-
ity of executable models that are built under a wide variety of models of computa-
tion” [4].

Its primary feature is the support for multiple computational models, which can
even be used within one system model. This is made possible by the actor-oriented
structure of Ptolemy. Examples of actor-oriented languages include hardware de-
scription languages, like VHDL and Verilog, and this makes Ptolemy well-suited for
embedded system design.

Also, parallel hardware designs can be synthesised directly from Synchronous
Dataflow Graph Specifications [37]. Ptolemy can thus generate VHDL code, as FPGA
vendor tools are able to generate VHDL code.

For distributed simulation, an architecture is provided that deals with mapping
of the simulation processes, and arranges communication and synchronization in a
manner that is transparent for the end user constructed on top of the Synchronous
DataFlow (SDF) domain called Automated Distributed Simulation (ADS) [15]. This is
possible due to the structure of Ptolemy — using the actor formalism. It is imple-
mented using the JINI platform, based on Java just like Ptolemy itself.

To use SHILS for hardware simulation, a client for the distributed simulation will
need to be developed according to available specifications. A MATLAB connector is
available from commercial vendors that are constructed out of Ptolemy.

For sequential oriented designs, pipelining techniques are offered to benefit from
distributed simulation.

5.9 Simics

Virtutech, a spin-off of the Swedish Institute of Computer Science (SICS), has created
Simics, a tool that aims at simulation and debugging software operating on mul-
ticore and multiprocessor machines [36]. It can simulate networks of processors.
Simulations in Simics can be distributed across multiple computers. It is used by the
ProtoFlex project in conjunction with an FPGA to increase the overall simulation
speed.

Problematic is that the Simics only supports simulation of multiprocessors that
are currently on the market, no custom designs are supported. To be able to simulate
anew design in Simics requires significant effort as a new processor model must be
created for each new hardware design. Also, these extensions can be implemented
only by Virtutech, not directly by an end user.

Another disadvantage of Simics is that there is no previous experience with us-
age of Simics at the CAES chair.

5.10. MANUAL SOLUTION 43

5.10 Manual solution

Each of the tools discussed above has disadvantages. The desired result of the man-
ual solution is a tool that perfectly matches the requirements of SHILS, stimuli gen-
erator/analyser and end user. This solution matches all the criteria of section 5.2
perfectly from the performance point of view. However, the manual solution is the
worst solution for effort and resources.

The major concern of the discussion of the tools is the communication overhead.
There are communication media available for even faster communication between
SHILS and MATLAB, like PCI-X, PCI-E [40] and a direct Front Side Bus (FSB) connec-
tion [7]. In this manner, a connection capable of transmitting several Gbps is offered.
In the FPGA an interface to the SHILS design has to be created, similar to the already
existing interface (chapter 3). Besides an interface for the FPGA, MATLAB connec-
tors need to be created. In order to replace QuestaSim transparently with SHILS in
MATLAB, additional effort is required.

5.11 Comparison

A decision should be made in favour of one of the discussed solutions based upon the
criteria listed in table 5.1. Per tool, a score is added to the criteria. Criterion 3 and 7
are not evaluated according to scores but according to features.

Statements on Xilinx System Generator also apply to Altera DSP Builder and are
referred to as FPGA vendor tools in this section.

Hardware connectivity is possible for almost every tool. The FPGA vendor tools
connect directly to FPGAs, whereas CosiMate, Simics and Ptolemy provide for a TCP/IP
interface for distributed simulation in the software. The FPGA connector must be de-
veloped for all tools, except for the FPGA vendor tools. TCP/IP hardware blocks are
available, but co-simulation logic still must be created manually. The FPGA vendor
tools generate the specialized co-simulation blocks too.

Most tools only support connectivity with a single other tool, except CosiMate
which has been designed specifically to interconnect multiple tools, and Ptolemy
with its computational domains. Transparent replacement of QuestaSim by SHILS
without changes is only possible with CosiMate, as only CosiMate configuration is
changed.

Each tool supports communication over the TCP/IP protocol. Most implementa-
tions work local at a single machine, but the co-simulation can be distributed across
multiple machines. MATLAB is equipped with a large number of connection proto-
cols including USB and serial connection that are sold separately. Therefore, MAT-
LAB is very versatile regarding connections. The FPGA vendor tools can access these
connection media too when available, but require changes to the connectors in both
the Simulink model and FPGA design.

The FPGA vendor tools generate hardware, and provide several options to inte-
grate this hardware in a design. For this reason the integration with the FPGA de-
sign is best for these tools. Code generation of designed cores is possible for Ptolemy,
CosiMate and MATLAB, which indicates that integration is possible, but less versatile
than the vendor tools.

Literature states performance problems with MATLAB due to significant com-
munication overhead [20]. Communication overhead is caused by a lot of effort re-
quired to keep the entire system synchronized. Future versions of CosiMate are

44 CHAPTER 5. EVALUATING CO-SIMULATION TOOLS

said to be capable of performing functional (asynchronous) simulation, a solution
with less communication could be developed for the FPGA vendor tools. Ptolemy is
equipped with ADS that arranges distribution across multiple clients [15]. This im-
proves performance if computation requires more computational power than com-
municating by pipelined parallel execution. Simulation in Simics is performed func-
tionally, therefore the performance is acceptable but not suitable for cycle-accurate
verification.

Data-pushing synchronisation can be applied by System Generator or CosiMate
natively. Ptolemy offers an automated mechanism to distribute actors in simula-
tion(ADS). The other tools use time synchronisation which can involve a lot of com-
munication overhead. Simics allows the simulation hosts to be out of sync slightly, to
reduce this overhead. Therefore, tools offering data-pushing synchronisation have
an advantage over the rest.

The required effort to create an initial system is large for CosiMate, Ptolemy and
Simics, due to the lack of previous experience within the CAES chair with these tools
in general and especially for use in co-simulation. System creation is graphical in
CosiMate, which indicates that the effort required to create the system is not Ex-
perience with MATLAB is available, initial deployment effort is therefore less for
MATLAB and the FPGA vendor tools, which use Simulink for modelling. As the FPGA
hardware can be generated by the FPGA vendor tools, total effort is lower for initial
deployment than for MATLAB.

The easiest approach to deploy a new DUT for simulation is to connect the new
model to already existing infrastructure. Therefore, CosiMate has an advantage over
the rest. As insertion of a block is pretty straightforward in Simulink, this is consid-
ered easy too. In the FPGA, no changes should be required when the implementation
has grown to its full potential.

The possibility to easily implement small changes to a design during simulation
is highly appreciated. The manner in which this is dealt with is highly implemen-
tation dependant. For example, at run-time, SHILS can change the connections be-
tween entities and the number of simulated entities. CosiMate only operates at the
interconnection level. It therefore does not directly provide facilities for this. The
tools, which only generate code for FPGAs (CosiMate, Ptolemy and MATLAB), are
not suited well, as a rerun of the synthesis process is not desired. This is of course
heavily dependant on the specific implementation which is made.

MATLARB is already used within the normal design flow. Therefore, usage of MAT-
LAB requires the least changes to the design flow. Tools which do not operate within
MATLAB (e.g. CosiMate), require minor changes to the design flow.

Most of the discussed tools require a license that must be purchased, except
Ptolemy, which is available free of charge. Fortunately, academic research licenses
are available for several of the other tools. A research licence for MATLAB must
be purchased. However, the communication interfaces are provided by a toolbox
which is not available at the CAES chair due to licensing specifications'. Using the
Instrument Control Toolbox require additional funds.

System requirements are comparable for each tool; a faster CPU will result in
faster generation of stimuli etc.

1The Research license of MATLAB does not include these toolboxes by default, whereas the educa-
tional licence does.

45

5.11. COMPARISON

*9]qe[TeAR SaSUADI] JIWAPLIY ,

"[003 UOTJONIISUOD 20BJISIUT Se Pasn ATUO UaYM 9

‘3urysnd ejep sasn Yorym UoIsualxe 92anos uado ue s1 a1
rysnd e3ep sasn yoIym uoIsuay reseyL

“Juswdo[aaap saambai 31 Jnq ‘adejiajul paaisap Aue juswajdur 03 aqrssod s1 3] .

"gVILVIN Jo sjooojoad O/ ay3 asn Ued Jojeausd walsAs ‘Ajoanjeu pajioddns aie gsn pue d1/dDL c

*3]qe[TeAR 3JE $90BJISIUI SNOJSWNU Nq ‘[BLISS PUe gSN ‘dl/dDL d[dWexa J0J 'sadeJIajul SNOLIBA YIIM AJIA[IOSUUOD SI9JJO qB[IBN z

Jnegap £q 10N ;

++

++

150D ‘21

+ - - + ++ ++ mory udisap ur Surppaquig ‘TT
++ + ot - ++ + pﬁwaums_ﬁm Jojoweaed ‘0T
- + + -+ + + UOTI9SUT [9pOtll MON 6
. - - + -+ - 110330 Juawkodap [eruy '8
elep /own ejep /own ejep elep /own awn oun WISTUEBYDUI UOIIBSIUOIYOUAS “/
- 0 + -/+ - - PESYISA0 UOIJEITUNIWIO) 9
++ - + - + - 2ouelIOJI=d "G
- — + ¥ ++ + uoneidaur vodi ‘v
Ol dVILVIN 2 4dSN

Auy d1/ddoL dl/ddoL dI/ddoL ‘dsn‘di/ddL ‘Teuas ‘dI/ddL sjoo030ad O /1 *¢
0 -- ++ ++ + + s7003 a[dn N 309UU0) °Z
+ 0 0 0 ++ + AJ1A1300UU0D dIBMPIEH ‘T

Jop[mg dsd

19 J0JeI9UD

[enuey SOTIIIS Awia103d 9JBINISOD wa)sAg dVI1LYIN

X11jewx QOmENQEOU [001 ‘T°G 9[qelL

46 CHAPTER 5. EVALUATING CO-SIMULATION TOOLS

5.12 Conclusion

Based on all arguments in the previous section (summarized in table 5.1), the best
solution is to implement the SHILS interface using Xilinx System Generator, and
slightly alter the MMIO interface in the FPGA accordingly. It offers all desired func-
tionality at a reasonable effort and performance. When more performance is desired
than Xilinx System Generator can offer, the next step is to create a custom system,
which requires a far greater effort to implement. When the custom solution is cho-
sen, CosiMate could provide easily for an interface for the interconnection medium.

Ptolemy scores quite well in table 5.1. It is not selected as best as it is not equipped
with FPGA connectivity features out-of-the-box. Furthermore, little experience of
Ptolemy is available at the CAES chair. Significant effort is thus required to gain
knowledge on how to use Ptolemy for co-simulation.

CHAPTER

SHILS co-simulation
system design

SHILS is intended as an aid in the verification(by simulation) process of large SoC/NoC
designs. Verification is performed by doing extensive simulations of a DUT. Previ-
ously, a relatively small embedded processor was used to generate stimuli for these
simulations [38, 39]. Besides the computational load of stimuli generation on the
processor, also the effort to deploy the test bench is considerable.

Software is already used in NoC design for several research tasks, such as analysis
and simulation of communication and data processing applications. MATLAB/Simulink
is often used for design exploration, but can also be used to perform behavioural
analysis of the implementation of such systems combined with QuestaSim and there-
fore to create advanced test benches. These test benches could be reused in the
verification process, but when verification is performed on a different platform, sig-
nificant effort is still required to port the test benches towards the other platform.
For flexibility in the stimuli generation procedure and re-usage of previously de-
veloped components, it is desirable that stimuli are generated by software, not by
hardware. By replacing the small processor with a standard PC, the performance
of stimuli generation can be improved with enhanced features. Software like MAT-
LAB offers advanced data analysis tooling for the analysis of simulation results. By
connecting SHILS to a PC, a “new” co-simulation system is created.

The system tasks are distributed across the PC and FPGA to fully benefit from the
capabilities of both FPGAs and PCs like shown in figure 6.1. Chapter 5 focuses on the
connection of PC and FPGA, whereas this chapter focuses on the entire system using
that connection.

The PC runs MATLAB for stimuli generation and analysis afterwards, and the
FPGA is charged with performing the simulation to accelerate the verification pro-
cess. The link between PC and FPGA can be tightly coupled, which can lead to a the
PC waiting on the FPGA or the opposite. This will lead to less performance than all
parts operating at full speed. To enable the simulator and MATLAB to operate at dif-
ferent operating speeds, buffering is required in the FPGA for stimuli elements and
output data, also used in the first design, see chapter 3.

47

48 CHAPTER 6. SHILS CO-SIMULATION SYSTEM DESIGN

- ~
_ FPGA
Computer(MATLAE) Stimuli buffer
Stimuli Generation
P . Simulation
Data Analysis N ‘
Output buffer
System control
L Y System control
& J

Figure 6.1: Global System structure

The connection between processor and FPGA in earlier implementations of SHILS
has been a DMA connection. For connectivity between PC and FPGA, several other
media are possible (discussed in section 6.3.3). Using these media, the connection
can be made using several tools (discussed in chapter 5), or manually.

The rest of this chapter discusses the high-level communication first. After-
wards, low-level communication using Xilinx System Generator is discussed, which
came up best out of the tool comparison.

6.1 Requirements

Criteria for co-simulation tools are defined in section 5.2, which are also applicable
for the created co-simulation system. The design should profit from general knowl-
edge of the target platform, based upon platforms available in the CAES chair. Also,
the system has to deal with requirements described in chapter 3 on reuse of previ-
ously developed parts.

Another important requirement is that the new design is more efficient than
previous implementations, especially in the field of communication overhead as this
is quite often a major bottleneck. The precise elements that are communicated and
the number of transmitted elements should be considered with great care for this
reason.

Earlier implementations show that, with significant effort in a processor (about
25% of the time purely to generate new elements), it is possible to keep up with the
simulator [38, 39]. The link between PC and FPGA must be loose without causing
problems with buffers or the rest of the system’s integrity. Stopping the simulator
to wait for data to be transmitted is not a good option for maximal performance.

6.2 Global system structure

The global system structure is depicted in figure 6.1. This shows the division of func-
tionality between the PC and FPGA. The global structure of this design is similar to
the design discussed in chapter 3.

Within the system, the PC is the master, the FPGA slave. To loosen up the link
between PC and FPGA, buffering is used for stimuli and output data. Previously,

6.3. DATA TRANSFER METHOD 49

a MMIO interface was used to control this, The MMIO interface was also used for
system control. Usage of a MMIO interface is a bit different than the data transfer
method used by MATLAB.

6.3 Data transfer method

Usage of the MMIO interface in the new system is evaluated for the data intensive
stimuli and output flows. The linear buffer (FIFO), implemented using circular ad-
dressing is not discussed at this point. Only the methods to transfer data to and from
the buffer are treated.

Within the system, options are available for placing data in the FIFO buffers,
these are discussed below.

6.3.1 Reuse MMIO interface in FPGA

The option that is easy to deploy in the FPGA is to keep the existing interface to
the FIFO buffers. MATLAB will then need to generate addresses where to store the
elements . This requires that MATLAB maintains an up-to-date administration of
the state of the buffer, involving a significant quantity of communication.

6.3.2 Add address generation to FPGA

Stimuli are generated as a sequence of elements most of the time. Therefore, no
advanced address generation mechanism is required, and this could easily be imple-
mented in hardware. Generally, it is better to execute such tasks in hardware to gain
better performance. Also, moving the task of address generation from MATLAB, re-
duces the communication overhead. The FPGA design is extended with an address
generation mechanism to reduce communication overhead, increasing overall per-
formance and reducing interface complexity in MATLAB.

Synchronized operation is required, even with loose coupling of PC and FPGA.
When buffers are full, no more elements may be transmitted to avoid buffer over-
flow problems, and empty places in the buffer must be filled as soon as possible to
keep the simulation from stalling. Stalling the simulator, of course, leads to a loss
of performance, but provides a safety net when the unlikely event might occur that
a buffer is empty. The FPGA design should be extended with logic that temporarily
halts the simulator when stimuli buffers are empty.

The moment until which the simulation in the FPGA can run undisturbed is eas-
ily determined at the moment that time codes are generated. The PC can use this
period of time to generate new stimuli. Knowledge about the time it takes to gen-
erate elements must be available. The FPGA control can be extended by a “Run for
n cycles” command using this principle. A parameter of the command is “n”, the
number of cycles that the simulator will run. This is a more sophisticated method
of pausing the simulator after a predetermined number of cycles, instead of using
the emergency break when a buffer is empty. Some administration is used in the PC
that sets the “Run for n cycles” counter when new data has arrived in the FPGA. With
these measures taken, the control data is significantly reduced. Instead of sending a
command each system cycle, the number of transmitted commands is divided by n.

Performance degrades slightly, but simulating with incorrect data leads to a sim-
ulation run that is completely useless.

50 CHAPTER 6. SHILS CO-SIMULATION SYSTEM DESIGN

The amount of data, which arrives in the FPGA differs with the medium used
for connection. A single stimulus sample could arrive in one frame or several thou-
sands of elements in one frame. The communication interface buffers these ele-
ments shortly as it is not possible to copy multiple elements instantaneously to the
stimuli buffers, and of course, the buffers are large enough to accommodate this
number of elements in the buffer. Large buffers allow a more loosely coupling of
PC and FPGA, simply due to the larger time both parts can operate independently.
Also, communication overhead is naturally lowered when transmitting more data in
the same package, according to Chan et al. [8]. This is not possible for all interface
media, like serial communication. Considering these aspects, a good balance has to
be found between buffer size, packet size and stimuli generation frequency.

The amount of data generated for stimuli is far greater than the amount of con-
trol data. Although the MMIO interface is well-proven, there is a lot of additional
data communicated for addressing. Reducing the number of addressing bits reduces
this overhead. Instead of using 26 bits for addressing(BCVP platform), this could be
reduced to only a few (2-4) bits to select between stimuli and control, which is easier
to implement in MATLAB and requires less resources in the FPGA.

However, when implementing the new SHILS using a DMA interface, argumenta-
tion above is invalid, as the connection is already equipped with the MMIO interface.
Thus, this is largely dependant on the used interconnection medium.

MATLAB is not equipped best for generating data/address bus like structures.
The mapping to physical addresses needs to be made in the background, by pro-
gramming MATLAB to write to certain predetermined addresses.

6.3.3 Interconnection medium

A number of features are available for some connection media only. These need to
be discussed. Based upon available platforms at the CAES chair, possible interfaces
are:

+ Serial

« USB

« TCP/IP (Ethernet)

+ Direct memory, i.e. PCI-X

Several other interfaces exist, possibly offering better throughput/performance.
PCI-Express is an example. Even a direct Front Side Bus link is available [7]. Focus
of this thesis is on available platforms, therefore, these kind of interfaces are not
considered.

To implement the connection between PC and FPGA, several tools are available,
which are discussed in chapter 5. As noted in chapter 3, the implementation is
equipped with a MMIO interface for connection to the BCVP platform. This may
be changed upon requirements of the connecting interface.

Serial interface

The serial interface is an often applied interface for connection of embedded sys-
tems, due to its simplicity and ease of implementation. However, SHILS will gen-
erate a lot of data at high frequencies. For most serial interface implementations,

6.3. DATA TRANSFER METHOD 51

this is not practical. Therefore is it not considered as an option for data communica-
tion. For high-priority, low latency, communication it can be a good option, i.e. IRQ
signals.

Serial interfaces operate at low layers in the Open Systems Interconnection ref-
erence model (OSI) model, for example the RS232 defines only the physical layer
(layer 1).

USB interface

For several applications, USB has superseded the serial interface, primarily due to
the higher bandwidth. In contrast with basic serial interfaces (i.e. RS232), several

protocol layers are offered on top of the physical layer. There are four types of trans-
fer defined [14]:

* Control Transfers

+ Interrupt Transfers

+ Asynchronous Transfers
+ Bulk Transfers

These types allow a better match to the requirements of the client software. In-
teresting for SHILS are Interrupt transfers, which offer bounded-latency communi-
cation at low frequencies and Bulk transfers for transferring a large quantities of
data at once.

TCP/IP over Ethernet interface

Several low level implementations of the TCP/IP protocol are available dealing with
levels 1 to 4 of the OSI model. IP is the Network layer. TCP is the Transport layer,
both operate on top of several physical media. Ethernet is most often used for this
purpose. The upper levels are left to the developer, and application-specific imple-
mentations. The required implementation effort is lower when standard connectors
are available for higher level communication.

The best solution for maximal throughput is Ethernet according to Xilinx System
Generator. System Generator can both operate in a normal TCP/IP network as well
as a point-to-point connection over Ethernet. This point-to-point connection only
implements the Physical and Data link layer for maximal throughput.

Direct memory

Theoretically, Direct Memory Access (DMA) for the processor offers maximum per-
formance, which is used in the first implementation of SHILS, see chapter 3. Another
direct connection is using a PCI interface, or its successors. Available for usage are
the EBI connection for the BCVP platform. A different platform provides a PCI-X
interface which offers a maximum throughput of 4.3 GB/s.

A hazard when using DMA is that a major part needs to be developed especially
for a specific target platform with its specific interconnection, which requires sig-
nificant effort.

52 CHAPTER 6. SHILS CO-SIMULATION SYSTEM DESIGN

6.4 Xilinx-based design

This section discusses a co-simulation system design based on Xilinx System Gen-
erator. System Generator can generate all required elements to use an FPGA in co-
simulation over Ethernet. The created system is depicted graphically in figure 6.2.

FPGA

Ethernet -

Co- Tri-mode Ethernet
simulation EtPI\;[eArget ; tPH;{
processor mntertace

Generated by System Generator
System SR EthPC .
Generator €&——=p MATLAB &——p Perne
Gateway L—J . Lib
interface

Simulation
MATLAB
model

PC

Figure 6.2: System design using Xilinx System Generator

Inside the FPGA are several cores generated by System Generator. The Ethernet
co-simulation processor takes care of the communication process with the PC. For
the Ethernet communication, an Ethernet MAC core is generated and a PHY inter-
face. The co-simulation processor offers a number of ports to the simulator in the
FPGA. These ports are defined in MATLAB using “Gateway” blocks which convert
MATLAB data types to System Generator fixed point data types (when applicable)
and takes care of the instantiation of the corresponding ports in the FPGA design.

The ports in the FPGA connects to registers for control and state or FIFO buffer
ports for the stimuli and output data. The output gateways of MATLAB write to the
input registers and stimuli buffers, the input gateways read from state registers and
output buffers. Of course, the amount of data that is transported to the FIFO buffers
is much larger than the amount of data for control and state.

The Ethernet connection delivers large packets of data at one moment for low
communication overhead. Therefore, the buffer capacity has to be large enough to
accommodate for the number of elements that are delivered. There are 10 buffers
provided by System Generator, allowing delay to clock in the data.

6.5. CONCLUSION 53

6.4.1 Performance

According to Xilinx, connecting System Generator over point-to-point Ethernet of-
fers the best performance and throughput, as it can operate at speeds up to 1Gbps
and use jumbo Ethernet frames (up to 8MB per frame) [8]. The communication over-
head, as the system of course requires management of the co-simulation processor,
is minimized when transmitting large quantities of data at a time. In creating large
frames of data, large buffers are required. By using System Generator to arrange the
communication, throughput is not considered a bottleneck, which is also substanti-
ated with figures on throughput [25].

In the unexpected event that communication throughput becomes a problem,
the system could be redefined to use either PCI-X, which offers a maximal bandwidth
of more than 4 GB/s, or create a system directly coupled to the FSB of a processor
like [7]. As consequence, Xilinx System Generator cannot be used to arrange the
communication for those platforms; it can be used to regulate the gateway struc-
tures.

If time it takes to generate new stimuli and perform analysis on the results be-
comes a problem, can this be solved by using computationally cheaper algorithms,
or by distributing stimuli generation across multiple PCs.

6.4.2 Deployment effort

If system parts could be generated, it requires less effort to implement. This has
been one of the primary reasons to choose Xilinx System Generator. Deployment in
the FPGA will be fairly easy, although caution should be taken to correctly design the
control and state interfaces which are structures that require multiple 32-bit words.
These interfaces are highly design specific.

6.4.3 Resources

The design has been based on hardware platforms that are already available at the
CAES chair. Therefore, the major cost is MATLAB, including the connectivity tool-
boxes and Xilinx System Generator. To examine the features of System Generator,
a limited demo version has been used. Academic licensing is available for System
Generator. The toolboxes for MATLAB need to be purchased for research purposes.

System Generator runs fine in MATLAB on a up to date PC (Intel Core 2 duo pro-
cessor at 3 GHz, 2GB RAM).

6.5 Conclusion

This chapter discussed the redesign of SHILS using Xilinx System Generator. It is
possible to design a loosely coupled system over Ethernet, with enough bandwidth
available for large amounts of data. In case that the interface does not offer enough
throughput, alternatives are proposed which will require larger deployment effort,
as System Generator could not be used for that purpose. An available platform has
a PCI-X interface. This interface is generally not supported in a normal PC. To gain
more throughput, significantly more resources are required to purchase dedicated
hardware.

CHAPTER

Results

To provide more insight in scalability of SHILS, the resource requirements are ex-
amined. These results are obtained from synthesis using Xilinx Integrated Synthesis
Environment (ISE).

The implementation of SHILS uses stimuli buffer that is 2048 elements deep and
32 bits wide. The output buffer is implemented identical. The IIR filter entity is used
as DUT.

SHILS is synthesized for a Xilinx Virtex-II series FPGA, type 3000, this FPGA has
resources shown in table 7.1 [41].

To be able to compare the number of required resources across multiple tech-
nologies, 4 figures are used:

+ the number of 4-input Look-Up Tables (LUTSs)

+ the number of synchronous memory (distributed RAM)
+ the number of Flip flops

+ the number of Block RAMs

Table 7.2 shows that 2.3% of the available 4-input LUTs are used, 3.5% of the num-
ber of available Flip Flops and 15.6% of the available Block RAMs are in use in the
Virtex-11 FPGA. A distributed RAM 2 LUTSs in a Virtex-II FPGA [41]. The number of
LUTs used for distributed RAM is not added to the number of 4 input LUTs in table 7.2.

Table 7.1: Xilinx Virtex-II available resources

4input LUTs Flip Flops Block RAMs
Virtex-II 3000{f1152 28672 28672 96

55

56 CHAPTER 7. RESULTS

Table 7.2: SHILS LUT resource consumption

Component 4input Percentage Distributed Flip Block
LUTs LUTs RAMs Flops RAMs
Simulator + DUT 177 26.8 % 12 92 7
Stimuli buffer 86 13.0 % 0 106 4
Output buffer 53 8.2 % 0 89 4
Control buffers 132 20.0 % 0 323 0
System controller 182 27.5% 0 291 0
SHILS 630 95.3 % 12 901 15
Platform Logic 31 4.7 % 0 89 0
Total in FPGA 661 100 % 12 990 15
% of FPGA capacity 23% 3.5% 15.6 %

Table 7.3: SHILS Simulator resource consumption

Component 4input Percentage Distributed Flip Block
LUTs LUTs RAMs Flops RAMs
Design Under Test 65 36.7% 0 0 0
Entity wrapper! 102 57.6 % 0 34 3
Simulator 75 42.4 % 12 58 4
Simulator total 177 100 % 12 92 7

! Including DUT

7.1 Simulator Scalability

For better insight in the overhead, the required resources for the simulator are split
out in table 7.3. The percentages for the DUT give a distorted view as the currently
implemented DUT is very small. A resource estimation for a larger DUT is listed by
Rutgers in [33, chapter 6].

7.2 Scalability of stimuli buffer

Other DUTs probably have a different configuration of inputs and outputs. An ex-
ample is a NoC with 256 routers and thus 256 inputs which should be buffered 32
elements deep. The inputs do not need to be provided with stimuli in parallel. This
example is used to compare with the current SHILS implementation that has a sin-
gle input which is buffered 2048 elements deep. The resource consumption for the
individual parts of the stimuli buffer are shown in table 7.4. Scalability is important
to increase the number of stimuli buffers, and decrease its depth.

7.3. CONTROL BUFFER SCALABILITY 57

Table 7.4: Stimuli buffer specified resource consumption

Component 4input Percentage Distributed Flip Block
LUTs LUTs RAMs Flops RAMs
Controller 61 70.9 % 0 89 0
Buffer 0 0 0 0 4
Timecode checker 25 291% 0 17 0
Total 86 100 % 0 106 4

7.2.1 Storage scaling

The current implementation of both the stimuli buffer and the output buffer store
2048 samples of 32 bits. These require 4 block RAMs each, as one block RAM can store
up to 512 elements of 36 bits wide. The alternative example stores 32 elements of 32
bits wide for 256 buffers, a total of 8192 elements, which can be stored easily in 16
block RAMs. The resources required to store the larger number of elements scales
linearly.

The data can be either stored in one large memory, or in 256 smaller memories.
Control of a large memory is important. The best solution is to divide the addressing
space into blocks for each input to avoid searching for stimuli for input X. Due to the
larger address width of a large memory, more LUTs are required and other inter-
connection logic for implementation are required, especially when the memory is
divided into blocks, although data density in the block RAMS is higher when using a
large memory.

7.2.2 Control scaling

When the entire stimuli buffer is instantiated multiple times for multiple inputs,
the number of resources required scales linearly. For selection of the correct buffer,
additional logic is necessary of course.

A controller for multiple buffers could be created, but would increase the com-
plexity and would thus increase the combinatorial path. Therefore, it is best to use a
separate controller for each stimuli input, of which the data is either stored in a sin-
gle large memory or individual memories. As noted above, a division of addressing
space in blocks eases access to the contents in an FIFO oriented fashion. Using mul-
tiple controllers is possible, as a controller requires little resources(0.3% resource
consumtion in Virtex-II 3000 FPGA).

7.3 Control buffer scalability

The control buffers are implemented as 32 bits wide buffers. Therefore, they con-
sume the same amount of logic when used in larger systems (with larger bit widths).
Also, the amount of resources required for all control buffers is marginal compared
to the available resources.

CHAPTER

Conclusion

The research for this final project has focused on two main issues as stated in the
introduction:

How to implement the simulator in an actual FPGA, how to connect it to
a processor and how to make them communicate?

and

How to connect a PC with the sequential simulator, how to make them
communicate and process?

For the implementation of the simulator in an FPGA, several components are
designed to provide the simulator with a sturdy external interface and buffers for
clock domain conversion. The external interface provides the simulator with a con-
nection to a processor, so that the processor and simulator can communicate using
Direct Memory Access over an MMIO interface. This interface theoretically offers
maximum throughput as the processor can access the FPGA directly. The design is
made suitable for a large variety of platforms. The implementation is created for the
BCVP platform. Resources for the stimuli buffer scale proportionally, the resources
consumed by the control buffers are constant. The stimuli buffers should be scaled
with care, implementation using fully parallel buffers is easiest.

The initial design and implementation for the BCVP platform were created with
limited features to provide a solid base for further research. Creating this imple-
mentation consumed much more time than was anticipated. Therefore, the focus
remained on the main topic of this final project — communicating with the simula-
tor.

To provide for a more versatile test platform, the ARM processor is replaced by
a PC. The PC can take care of the set-up of link memories in the simulator before
simulation. This is done manually up till now.

The combination of an FPGA and a PC create a new co-simulation system. The
interconnection is often a major performance bottleneck in co-simulation systems.
To create the interconnection between PC and FPGA without much effort, several
tools can be used. Xilinx System Generator is evaluated as the best tool for SHILS,
in particular as it generates facilities the for synchronization and communication.

59

60 CHAPTER 8. CONCLUSION

The required effort to deploy SHILS using System Generator is lower than for other
options, and communication overhead is not significant. Ethernet is used as com-
munication medium over which System Generator can transmit raw Ethernet frames
in a point-to-point connection to obtain the best possible throughput. Transmission
speeds of 1Gbps are theoretically possible according to Xilinx.

8.1 Recommendations and Future work

SHILS is work in progress, several issues arose in the design and implementation
phases. Besides optimizations for SHILS and its tooling, also new ideas are men-
tioned.

8.1.1 Improve conversion to simulator

When a design is made, the designer will need to manually define the entity which
will be simulated sequentially. These manual changes imply a serious risk of in-
troducing additional errors in the process of linking the entities together. This is
undesired in the test and verification of a design.

8.1.2 Better simulation control in FPGA

Control of the simulation in the FPGA is easy, but should be done with care. Registers
keep the same value when set once. It often is easier to allow a fixed number of sys-
tem cycles before issuing another command. Tight coupling of FPGA and processor is
not desired, the processor cannot monitor exactly at what moment the simulation is
done. Therefore, the simulator control should be extended such that the command
register in the FPGA is reset each time a command is accepted. This ensures that the
simulator stops after a full system cycle, instead of running to completion.

8.1.3 Data compression of stimuli and output data

For now, all data is transmitted and stored without any form of compression. With
limited bandwidths and storage capacity, using compression poses an opportunity
to enhance throughput and storage capability. As compression and decompression
requires resources and time, this requires more thorough examination.

8.1.4 Replace QuestaSim with SHILS

The new design can be constructed in such a method that one can choose whether

to simulate using QuestaSim, or using SHILS with the same set of test data.
Behavioural simulations can be done easily in QuestaSim, and SHILS can be used

for cycle-true bit-accurate simulations that in QuestaSim last prohibitively long.

APPENDIX

Memory Map

Figure A.1 shows the address space which is available for SHILS as designed in the
FPGA. The addresses which are mentioned indicate the range which is reserved for
a certain block. The figure shows the word address. In the connection to the proces-
sor is the most significant byte one position shifted left. This is caused by physical
defects on the test platform (section 4.1) The processor uses byte addressing. For
these reasons, an address translation table is created, depicted in tables A.1 and A.2.

32 bits
Data to stimuli buffer
Data from output buffer

Echo register
System state and control

0x0000
0x1000
0x4000
0x5000
0x8000
0x8001
0xF000
OxFFFF

Figure A.1: Global address space division

The system state and control address space is expanded in figure A.2. The address
space for simulator control and state is in the range of exFece up to exrerr, which is
expanded in figure A.3. Figure A.3 uses naming in accordance with Rutgers [33]. All
these figures show the address space as designed in the FPGA, which is a sort of word
addressing.

61

62 APPENDIX A. MEMORY MAP
Q| = 'EP g QO |— b E —_—
—=| —= | ©
SHEES HERE] 2
5|3 2 |2 58] 2|3 s | %
N o) = =R R
2 EIEELS ElEIE 5| B
El ESIEi=A R o923 | o Q w
==l (e == |0 = -
EEIE 2l3lel3 =]
SIR=IIERES 2 El2° g g
S| 5| € |= S| 3|Ee k= n
Rz E= = SO |3 a n
n | g O | B
= =
& 5
Figure A.2: System control address space
sl |z
. HEHEREE
%) %) o—
Fg A g EB 5} 20 s 3 g = g £
21 S| 0| & — BN =11 b4 E =
s gl 5|E|=|8] S S=l<l2El 8
$Ew:'8§§,5 G
Rk e
S| £| &5~
=] —
|9} =%
Figure A.3: Simulator state and control address space
Table A.1: Write memory map
GPP FPGA addressing Description
Byte address bits 16-13 bits 7-4 bits 3-0
0x00000 0x0 X! X! Write data to FIFO
0x80000 0x8 Write data to echo register
Buffer control
0XFBOOC OxF 0x0 0x3 Update FIFO input write pointer
0xF0OOC OXF x4 0x3 Update FIFO output read pointer
bits 4-0° Simulator control
0xFe300 OXF 0xC 0x0 Command
0xFO304 OXF 0xC ox1 Address
0xFO308 OXF 0xC ox2 Read from
0xFO30C OXF 0xC 0x3 Stimuli mask
0xF0O310 OxF 0xC 0x4 Write to
0xFO314 OXF 0xC 0x5 Enable

1 Actually, these bits determine the address at which the data is stored in the FIFO buffer.
2 To reserve a larger addressing space for simulator control, 5 bits are used.

Table A.2: Read memory map

63

GPP FPGA addressing Description
Byte address bits 16-13 bits 7-4 bits 3-0
0x00000 0x0 X X Return 0xDEADBEEF
0x10000 ox1 X X Return 0xBEEFDEAD
0x40000 x4 X! X! Return FIFO output data
0x80000 0x8 X X Read data from echo register
Buffer State
0xF0O00 OXF 0x0 0x0 Return input size
0xFO004 OxF 0x0 ox1 Return input full
0xF0008 OXF 0x0 0x2 Return input empty
0xF00OC OxF 0x0 0x3 Return input write pointer
0XxF0100 OxF 0x4 0x0 Return output size
0xFO104 OxF ox4 ox1 Return output full
0xFO108 OxF 0x4 0x2 Return output empty
0xFO10C OxF 0x4 0x3 Return output read pointer
bits 4-0° Simulator state
0xF0380 OxF OXE 0x0 Running
0xFO384 OxF OXE ox1 Current_address
0XxFO388 OxF OXE 0x2 Current_addr_valid
0xFO38C OxF OxE 0x3 Prefetch_stimuli
0xFO390 OxF OXE x4 Prefetch_addr_valid
0xFO394 OxF OXE 0x5 Prefetch_mask
0xFO398 OxF OXE 0x6 Clk_cnt

! Actually, these bits determine the address at which the data is read from the FIFO buffer.
2 To reserve a larger addressing space for simulator state, 5 bits are used.

APPENDIX

Test case: IIR filter

A test case is used to verify whether there are difficulties with the test flow, and to
test the challenges for a system designer.
The test case is very basic, but nevertheless involves these aspects:

1. Homogeneous structure’

2. Easily adaptable number of taps, thus increasing the number of entities and
the complexity.

3. Contains both forwards and backwards loops.

B.1 IIR filter

The example is an Infinite Impulse Response (IIR) filter. The equation for an IIR filter is:

n n
Un =Y biltn_i— Y @iy (8.1)
i=0 i=0
This equation expands to:

Yn = boTpn + b1%p—1 + b2Tp_2 — A1Yn—1 — G2Yn—2 - -
withn =0,1,2,--- (B.2)

The equation above clearly shows several recognisable items of a regular struc-
ture. Graphically, this is even more clear (see figure B.1). AnIIR filter can be designed
in several structures [23]. Figure B.1 shows the direct-form structure of an IIR filter
that is used for tests.

The regular structure of an IIR filter is easily recognisable in the forwards path,
but somewhat less straightforward in the backwards part. The single entity which
should be processed by the tool of Rutgers is shown in figure B.2, which is a very
small piece of hardware.

1A number of changes to the structure are necessary to create an entirely homogeneous structure,
however.

65

66 APPENDIX B. TEST CASE: IIR FILTER

x(t) o—)o—)—)(x)—) x ————>oy(t)

;

Figure B.1: Basic IIR filter

(coefficient)
x(t) o———>1¢ o
sum_out
Y
71 sum_in
od_out
N\ J

Figure B.2: IIR entity design

A first order IIR filter design has been made to test the outcome of the trans-
formed design. The design for the IIR entity shown in figure B.2 is specified in list-
ing B.2. The entity is equipped with several ports, specified in listing B.1.

The implementation of the asynchronous and synchronous part are explicitly
separated for clarity. The IIR entity is used by the IIR filter top-level entity. The
top-level entity uses the generate statement of VHDL for automated instantiation of
a multi-taps IIR filter.

B.2. HOMOGENEOUS STRUCTURE 67

entity iir is

port (
reset : in std logic;
clk : in std logic
X : in std logic vector (15 downto 0);

coefficient : in std logic vector (15 downto 0);

sum_in : in std logic vector (15 downto 0);
d out : out std logic vector (15 downto 0);
sum out : out std logic vector (15 downto 0)
)i

end iir;

Listing B.1: IIR entity definition

-- ========= asynchronous ========
process(x, sum in, coefficient)

variable mult _out : signed(31 downto 0);

variable sum_int : signed(15 downto 0);
begin

--calculate product

mult out := signed(x) * signed(coefficient);

--calculate sum
sum_int := mult out(30 downto 15) + signed(sum_in);
sum_out <= std_logic_vector(sum_int);

end process

-- ========= synchronous ========
--delay input sample with one clock cycle and provide reset circuitry
process (clk,reset)
begin
if reset ='1’ then -- ATTN: Active high reset!
delay <= x"0000";
elsif rising edge(clk) then --force fdc flip-flop by if statement.
delay <= x
end if;
end process

Listing B.2: IIR entity behaviour VHDL code

B.2 Homogeneous structure

Figure B.1 shows that an IIR filter is not entirely homogeneous by the components
filled light. To generate the IIR filter, a number of different conditions are used. The
code to generate an IIR filter is added in listing B.3.

The transformation tool of Rutgers [33] is not able to process systems that are
not fully homogeneous. The structure of the IIR filter must be changed for this rea-

68 APPENDIX B. TEST CASE: IIR FILTER

son. Two additional instantiations of the basic IIR entity were added to replace the
irregular components.

Mathematically, the multipliers can be “bypassed” using coefficient 1. The IIR
filter is constructed in a fixed-width system, which can not represent 1. A solution,
which is correct, is to multiply two times by —1, as —12 is exactly 1. This requires the
addition of more entities, which results in a total of seven entities for a first order
IIR filter. To scale the filter to a second order only two entities need to be added and
4 to create a third order filter.

In the end, the design is built out of 7 blocks, which are tied together by a number
of wires as shown in figure B.3. For readability, the coefficient input is not named,
though the values for it are depicted.

s N
ap =1l =il -1 -1
4 1 4 4 1
X s_out X s_out X s_out X s_out X s_out
IIR #0 IIR #2 IIR #3 IIR #5 IIR #6
d_out s_in d_out s_in d_out s_in d_out s_in d_out s_in
l . T L1 T b l T 1l 1
22 0 + 0 0
X s_out s_out X
IIR #1 IIR #4
d_out s_in s_in d_out
0 0
N J

Figure B.3: IIR filter as block, homogeneous

B.3 Challenges

Usage of the transformation tool has posed challenges, which are discussed in this
section. A common mistake on signal naming is discussed.

As specified by Rutgers [33, section 5.5.3], the tool can connect only one output
to a single input. However, the IIR filter requires that both the output of the adder
and the delay output can be connected to the ‘X’ input of an IIR entity, as shown
in figure B.3. The hatched components are connected via different ports than the
other components. In simulation, multiple link memory outputs try to write to the
same signal simultaneously. This pitfall causes conflicts in the signal, which becomes
invalid. Therefore, a manual change has been made to the wrapper entity; an addi-
tional multiplexer was added. This is suggested by Rutgers too. The transformation
tool is not adjusted to support this feature.

A common practice in system design is to name a signal ‘reset’ when the reset
condition is active when the signal is ‘high’, instead of ‘low’. However, the trans-
formation tool uses the name 'reset’ for its active-low reset condition, which is mis-
leading. Listing B.2 uses active-high reset for this reason.

B.3. CHALLENGES

69

--Instantiate FIR parts
fir: for tap in 0 to LENGTH_IIR generate
fir_in : if (tap=0) generate -- Irregular: upmost block
fir_part_1: entity work.iir port map(X,
fir _delay(0),
fir_sum_out(0),
fir _sum_out(1),
fir_coeff(0),
clk, reset);
end generate;
fir_others : if (tap>0) generate -- Regular structure (tap 1 to end)
fir part : entity work.iir port map(fir delay(tap-1),
fir_delay(tap),
fir_sum_out(tap),
fir_sum_out(tap+l),
fir_coeff(tap),
clk, reset);
end generate;
end generate;
-- Regular part
iir: for tap in 0 to LENGTH_IIR+l generate
iir_irr : if (tap=0) generate
total _part: entity work.iir port map(fir_sum_out(0),
iir_delay(0),
iir_sum_out(0),
iir_sum_out(2),
iir_coeff(0),
clk, reset);
iir_part_1: entity work.iir port map(iir_sum_out(0),
iir _delay(1),
iir_sum_out(1),
zero,
iir_coeff(0),
clk, reset);
end generate;
iir reg : if (tap>l) generate
iir part: entity work.iir port map(iir delay(tap-1),
iir_delay(tap),
iir_sum_out(tap),
iir_sum_out(tap+l),
iir_coeff(tap-1),
clk, reset);
end generate;
end generate;

Listing B.3: IIR filter generation code

70 APPENDIX B. TEST CASE: IIR FILTER

Table B.1: IIR filter entity resource consumption

Precision Synthesis

Resource Used Available Utilization
Function Generators 16 28672 0.06%
CLB Slices 8 14336 0.06%
Dffs or Latches 16 30832 0.05%
Block RAMs 0 96 0.00%
Block Multipliers 0 96 0.00%

B.4 Results

Synthesis results are listed in table B.1.

APPENDIX

C code listings

This appendix contains the definitions of the structures that are used to describe
the memory map for the processor in the BCVP platform. Similar to appendix A,
the simulator control and state are expanded in individual structures (listings C.2
and C.3)

struct Hw bridge{
/* 0x00000000 */ volatile long data2fifo[IN_FIFO_SIZE];
/* 0x00000040 */ fill(reserved, sizeof(data2fifo), ®x10000); //Initial test size
/* 0x00010000 */ volatile long testl;
/* 0x00010003 */ fill(reserved0, 0x10004, 0x40000);
/* 0x00040000 */ volatile long data2arm[OUT FIFO SIZE];
/* 0x00040040 */ fill(reservedl, 0x40000+sizeof (data2arm), 0x80000); //Initial test size
/* 0x00080000 */ volatile long echo;
/* 0x00080004 */ fill(reserved2, 0x80004, 0xF0000);
/* 0x000F0000 */ Fifo_state in_fifo;
/* 0x000F0010 */ fill(reserved3, O0xFO010, OxFO100);
/* 0x000F0100 */ Fifo_state out_fifo;
/* 0x000F0110 */ fill(reserved4, 0xFO110, OxF02C0);
/* 0x000F02CO */ volatile long test2;
/* 0x000F02C4 */ fill(reserved5, 0xF02C4, OxF0300);
/* 0x000F0300 */ Sim_ctrl control;
/* 0x000F0318 */ fill(reserved6, 0xFO318, OxFO380);
/* 0x000FO380 */ Sim_state state;
/* 0x000F0398 */ // End address

* *
~

*

*

*

*

*

*

*

*

*

Listing C.1: Structure describing memory map in processor

struct Sim_ctrl{
/* 0x0000 */ volatile long cmd;
/* 0x0004 */ volatile long addr;
/* 0x0008 */ volatile long read_from;
/* 0x000C */ volatile long stimuli_mask;
/* 0x0010 */ volatile long write_to;
/* 0x0014 */ volatile long enable;
}

Listing C.2: Simulator control struct

71

72

APPENDIX C. C CODE LISTINGS

struct Sim_state{
/* 0x0000 */ volat
/* 0x0004 */ volat.
/* 0x0008 */ volat
/* 0x000C */ volat.
/* 0x0010 */ volat
/* 0x0014 */ volat
/* 0x0018 */ volat

ile long running;

ile long current_addr;

ile long current_addr_valid;
ile long prefetch _stimuli;
ile long prefetch_addr valid;
ile long prefetch_mask;

ile long clk_cnt;

Listing C.3: Simulator state struct

extern unsigned char

link(long address, long read _from, long stimuli_mask,

long write_to){

hw_bridge->control

hw_bridge->control.
hw_bridge->control.

hw_bridge->control

hw_bridge->control.

return 1;

.cmd = CMD_CREATE_LINKS;

addr = address;

read from = read from;
.stimuli_mask = stimuli_mask;
write to = write_to;

Listing C.4: Instantiate link memory function

(12]

Bibliography

Altera. DSP Builder User Guide, 8.0 edition, May 2008.

L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,
35(1):70-78, 2002.

UC Berkeley. Research Accelerator for Multiple Processors (RAMP) project.
http: //ramp. eecs. berkeley. edu/. Last checked August 15, 2008.

Christopher Brooks, Edward A. Lee, Xiaojun Liu, Stephen Neuendorffer, Yang
Zhao, and Haiyang Zheng. Heterogeneous Concurrent Modeling and Design in
Java (Volume 1: Introduction to Ptolemy II). Technical Report UCB/EECS-2008-
28, EECS Department, University of California, Berkeley, April 2008.

W. Brugger, M. Hofinger, and 4S partners. 4S BCVP specification. Atmel Germany,
April 2004.

Controllab Products B.V. 20-sim. www. 20- sim. com. Last checked August 15, 2008.

Allan Cantle and Robin Bruce(Nallatech). An introduction to the Nallatech
Slipstream FSB-FPGA Accelerator Module for Intel Platforms & the Nallatech
High-Level Toolset. White paper NT 405-0342, September 2007. NT 405-0342
http: //www. nallatech. com/medialLibrary/images/english/6615. pdf.

Ben Chan, Nabeel Shirazi, and Jonathan Ballagh. Achieving high-bandwidth
DSP simulations using Ethernet Hardware-in-the-Loop. DSP Magazine, 2:42-44,
May 2006. Xilinx.

C. Chang, C. Chang, J. Wawrzynek, and R.W. Brodersen. BEE2: a high-end re-
configurable computing system. IEEE Design & Test of Computers, 22(2):114-125,
2005.

ChiasTek. Cosimate: Heterogeneous co-simulation in distributed environ-
ments. http: //www. chiastek. com/products/cosimate. html, 2008. Last checked Au-
gust 15, 2008.

Eric S. Chung, Eriko Nurvitadhi, James C. Hoe, Babak Falsafi, and Ken Mai. Vir-
tualized Full-System Emulation of Multiprocessors using FPGAs. In Workshop
on Architectural Research Prototyping (during ISCA2007), volume 2, New York, NY,
USA, June 2007. ACM.

Eric S. Chung, Eriko Nurvitadhi, James C. Hoe, Babak Falsafi, and Ken Mai.
A complexity-effective architecture for accelerating full-system multiproces-
sor simulations using FPGAs. In FPGA 08: Proceedings of the 16th international

73

http://ramp.eecs.berkeley.edu/
www.20-sim.com
http://www.nallatech.com/mediaLibrary/images/english/6615.pdf
http://www.chiastek.com/products/cosimate.html

74

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

ACM/SIGDA symposium on Field programmable gate arrays, pages 77-86, New York,
NY, USA, February 2008. ACM.

Moo-Kyoung Chung and Chong-Min Kyung. Enhancing performance of HW/SW
cosimulation and coemulation by reducing communication overhead. IEEE
Transactions on Computers, 55(2):125-136, February 2006.

Hewlett-Packard Company, Intel Corporation, Lucent Technologies Inc, Mi-
crosoft Corporation, NEC Corporation, and Koninklijke Philips Electronics N.V.
Universal serial bus specification revision 2.0, 2000. downloaded from www. usb.
org.

Daniel Lazaro Cuadrado, Anders P. Ravn, and Peter Koch. Automated Dis-
tributed Simulation in Ptolemy II. In Proceedings on the 25th IASTED International
Multi-Conference Parallel and Distributed Computing and Networks (PCDN'07), pages
139-144, Anaheim, CA, USA, February 2007. ACTA Press.

A.S.Damstra. Virtual prototyping through co-simulation in hardware/software
and mechatronics co-design. Master’s thesis, Control Laboraty, University of
Twente, April 2008.

Daniel Denning(Nallatech). Accelerate and verify algorithms with the
XtremeDSP development kit-11. Xcell Journal Online, (49), Summer 2004.

John W. Eaton and Community. GNU Octave. http: //www. gnu. org/software/
octave/, 2008. Last checked August 15, 2008.

Nicolas Genko, David Atienza, and Giovanni De Micheli. NoC Emulation on
FPGA: HW/SW Synergy for NoC Features Exploration. In Proceedings of the Inter-
national Conference on Parallel Computing (ParC02005), volume 33, pages 753-760,
Jiilich, Germany, September 2005. John von Neumann Institute for Computing
(NIC).

B. Gestner and D.V. Anderson. Automatic generation of ModelSim-Matlab in-
terface for RTL debugging and verification. In Proceedings of the 50th Midwest
Symposium on Circuits and Systems MWSCAS 2007, pages 1497-1500, Los Alamitos,
CA, USA, August 2007. IEEE.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, Third edition, May 2003. ISBN 1-55860-596-7.

K.J.Hines. Pia: A framework for embedded system co-simulation with dynamic
communication support. Technical Report TR-96-11-04, University of Washing-
ton, October 1996.

Douglas L. Jones. IIR Filter Structures. Connexions http: //cnx. org/content/
m11919/1latest/, December 2004, Last checked August 15, 2008.

A. Lafage. HSMC3 functional specifications. Atmel Coorporation, April 2003.

V. S.Lin and D. E. Pansatiankul. Hardware-accelerated simulation tool for end-
to-end communication systems. In Proceedings of the IEEE Global Telecommunica-
tions Conference GLOBECOM 06, pages 1-5, Los Alamitos, CA, USA, November 2006.
IEEE.

www.usb.org
www.usb.org
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://cnx.org/content/m11919/latest/
http://cnx.org/content/m11919/latest/

BIBLIOGRAPHY 75

[26]

(27]

(28]

[29]

The Mathworks. EDA Simulator Link™MQ. http: //www. mathworks. com/products/
modelsim/, March 2008. (version 2.4) Last checked August 15, 2008.

The Mathworks. MATLAB®- the language of technical computing. http: //www.
mathworks. com/products/matlab/, March 2008. (version 7.6) Last checked: August
15, 2008.

L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-
data algorithms for high-quality clustering. In Proceedings of the 18th Inter-
national Conference on Data Engineering, pages 685-694, Los Alamitos, CA, USA,
February 2002. IEEE Computer Society.

K. Olukotun, M. Heinrich, and D. Ofelt. Digital system simulation: methodolo-
gies and examples. In Proc. Design Automation Conference, pages 658-663, Los
Alamitos, CA, USA, June 1998. IEEE Computer Society.

[30] Jingzhao Ou and V.K. Prasanna. MATLAB/Simulink Based Hardware/Soft-

(32]

ware Co-Simulation for Designing Using FPGA Configured Soft Processors. In
Proc. 19th IEEE International Parallel and Distributed Processing Symposium, pages
148b-148b, Los Alamitos, CA, USA, April 2005. IEEE.

K.N. Parashar and N. Chandrachoodan. A novel event based simulation algo-
rithm for sequential digital circuit simulation. In Proc. International Conference
on Field Programmable Logic and Applications FPL 2007, pages 792-795, Los Alami-
tos, CA, USA, August 2007. IEEE.

W. W. Royce. Managing the development of large software systems: concepts
and techniques. In ICSE '87: Proceedings of the 9th international conference on Soft-
ware Engineering, pages 328-338, Los Alamitos, CA, USA, March 1987. IEEE Com-
puter Society Press.

[33] J. H. Rutgers. Automated sequential hardware-in-the-loop simulator genera-

(36]

(37]

tion. Technical report, University of Twente, November 2007.

A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall, 2002. ISBN 0-13-121786-0.

C. A. Verhaar. An integrated embedded control softwaredesign case study us-
ing Ptolemy II. Master’s thesis, Control Laboratory, University of Twente, May
2008.

Virtutech. Simics for multicore software. White paper, June 2007. www.
virtutech. com,

Michael C. Williamson. Synthesis of Parallel Hardware Implementations from Syn-
chronous Dataflow Graph Specifications. PhD thesis, EECS Department, University
of California, Berkeley, 1998,

P.T. Wolkotte, P. K. F. Holzenspies, and G.J. M. Smit. Fast, Accurate and Detailed
NoC Simulations. In Proceedings of the 1st ACM/IEEE International Symposium on
Networks-on-Chip, Princeton, NJ, USA, pages 323-332, Los Alamitos, May 2007. IEEE
Computer Society Press.

http://www.mathworks.com/products/modelsim/
http://www.mathworks.com/products/modelsim/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
www.virtutech.com
www.virtutech.com

76 BIBLIOGRAPHY

[39] P. T. Wolkotte, P. K. F. Holzenspies, and G. J. M. Smit. Using an FPGA for Fast
Bit Accurate SoC Simulation. In Proceedings of the 21th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’07) - 14th Reconfigurable Architecture
Workshop (RAW 2007), Long Beach, CA, USA, page 167, Piscataway, March 2007. IEEE
Computer Society Press.

[40] Xilinx, Technology solutions - connectivity. http: //www. xilinx. com/products/
design_resources/conn_central/index. htm. Last checked August 15, 2008.

[41] Xilinx. Virtex-1I platform FPGAs: Complete data sheet, November 2007. DS031,
version 3.5.

[42] Xilinx. System Generator for DSP User Manual, 10.1.1 edition, April 2008.

[43] Xilinx, Justin Delva, Adrian Chirila-Rus, Ben Chan, and Shay Seng. Using system
generator for systematic HDL design, verification and validation. White Paper,
January 2008.

http://www.xilinx.com/products/design_resources/conn_central/index.htm
http://www.xilinx.com/products/design_resources/conn_central/index.htm

	Contents
	List of Acronyms
	Introduction
	Motivation
	Hardware-based simulation: emulation
	Sequential Simulation

	Assignment
	Thesis Outline

	Background
	System design process
	Digital System Design
	Tool chain

	Co-simulation
	Sequential Simulator
	Simulator design
	Using SHILS

	Related work
	Hardware emulation systems
	Sequential Simulation
	Co-simulation

	Basic SHILS design
	System structure
	Design
	Stimuli
	Stimuli Buffer design
	Output buffer design
	Interface bridge design

	Implementation
	Platform
	Hardware implementation
	System Controller
	Memory-Mapped I/O interface
	Simulator
	Stimuli buffer
	Timecode checker
	Output buffer

	Software implementation
	Configure connection
	Test connection
	Configure simulation
	Run simulation

	Tool evaluation
	Requirements
	Criteria
	Selected tools
	MATLAB
	MATLAB EDA link MQ

	Xilinx System Generator
	Altera DSP Builder
	CosiMate
	Ptolemy
	Simics
	Manual solution
	Comparison
	Conclusion

	Co-simulation system design
	Requirements
	Global system structure
	Data transfer method
	Reuse MMIO interface in FPGA
	Add address generation to FPGA
	Interconnection medium

	Xilinx-based design
	Performance
	Deployment effort
	Resources

	Conclusion

	Results
	Simulator Scalability
	Scalability of stimuli buffer
	Storage scaling
	Control scaling

	Control buffer scalability

	Conclusion
	Recommendations and Future work
	Improve conversion to simulator
	Better simulation control in FPGA
	Data compression of stimuli and output data
	Replace QuestaSim with SHILS

	Memory Map
	Test case: IIR filter
	IIR filter
	Homogeneous structure
	Challenges
	Results

	C code listings
	Bibliography

